QSAR modeling studies of a library of Human Tyrosinase inhibitors

Bibliographic Details
Main Author: Mateus, Cristiano Gabi dos Santos
Publication Date: 2022
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10198/26453
Summary: Melanogenesis is the chemical process responsible for synthesizing melanin, which occurs in melanocytes, in subcellular lysosome-like organelles called melanosomes. Melanin plays a vital role in protecting the skin from damage caused by ultraviolet rays. However, excess melanin production or abnormal distribution can cause various pigmentation disorders, such as over-tanning, age spots, and melasma. Skin disorders like these, have prompted the development of skin-whitening compounds to reduce melanin content. Furthermore, inhibition of melanin synthesis is considered a valid therapeutic strategy for treating advanced melanotic melanomas Human tyrosinase (hsTYR) is the most important enzyme involved in the melanogenesis process, as it catalyzes, at least, its first two steps. Tyrosinase from the white button mushroom Agaricus bisporus (abTYR) has been widely available at low cost from commercial sources for several decades, whereas hsTYR is still expensive and difficult to produce. The importance of discovering more and better hsTYR inhibitors has been widely discussed, as when tested against hsTYR, several abTYR inhibitors provide disappointing results, including some of the most extensively used depigmenting compounds now used in dermocosmetics. An in silico methodology that can be used to predict compound bioactivities is QSAR (quantitative structure-activity relationship) modelling. A QSAR model tries to find correlations between a biological activity of interest and molecular descriptors calculated from the compound structure. In this work, a QSAR model was developed to predict hsTYR inhibition activity using the PYTHON computer language and its PyQSAR package. To develop a QSAR model, a library of 196 known hsTYR inhibitors was gathered, and compounds were divided into 6 groups according to their scaffold structure. A total of 33 QSAR models were prepared using different combinations of the defined groups and different pools of molecular descriptors. QSAR model 32 was selected for further use as it presented good statistical robustness and had the highest number of compounds, 41 in total. Of the 28,933 molecular descriptors calculated by the OCHEM platform for the 41 compounds used, PyQSAR selected 4 to be used in the model: C-026; DISSM2C; MaxdssC; WHALES90_Rem. The statistical data obtained after the validation of the QSAR model by cross-validation was excellent, namely the determination coefficient (R2CV=0.9147), the value of the square root of the mean error (RMSE CV=0.1878) and the mean value of the score of the multiple linear regression method (Q2CV=0.8922). This QSAR model originates a mathematical equation that allows the prediction of hsTYR inhibition activity by new compounds with similar structures. A library of natural compounds, with a structure similar to those used to develop QSAR model 32, was created using the COCONUT database of natural compounds. A total of 1,628 natural compounds were gathered, their molecular descriptors were calculated, and the QSAR model 32 equation was applied. The results are displayed on a website and can be viewed by accessing the URL http://esa.ipb.pt/qsar/. The ZINC15 database was used to determine which of the compounds in the developed natural compound library would be available for purchase after predicting the hsTYR inhibitory activity of each compound in the library. A total of 18 different compounds were bought from different companies. To evaluate these compounds experimental ability to inhibit hsTYR and thus validate QSAR model 32, the compounds will be tested against this enzyme. If those compounds activity is confirmed, they may be used in cosmeceutical applications.
id RCAP_f206a2bfcd61bad54a1d140a9b7ded6f
oai_identifier_str oai:bibliotecadigital.ipb.pt:10198/26453
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling QSAR modeling studies of a library of Human Tyrosinase inhibitorsQSARPYTHONPyQSARMolecular descriptorMelaninhsTYRabTYROCHEMCOCONUTZINC15Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasMelanogenesis is the chemical process responsible for synthesizing melanin, which occurs in melanocytes, in subcellular lysosome-like organelles called melanosomes. Melanin plays a vital role in protecting the skin from damage caused by ultraviolet rays. However, excess melanin production or abnormal distribution can cause various pigmentation disorders, such as over-tanning, age spots, and melasma. Skin disorders like these, have prompted the development of skin-whitening compounds to reduce melanin content. Furthermore, inhibition of melanin synthesis is considered a valid therapeutic strategy for treating advanced melanotic melanomas Human tyrosinase (hsTYR) is the most important enzyme involved in the melanogenesis process, as it catalyzes, at least, its first two steps. Tyrosinase from the white button mushroom Agaricus bisporus (abTYR) has been widely available at low cost from commercial sources for several decades, whereas hsTYR is still expensive and difficult to produce. The importance of discovering more and better hsTYR inhibitors has been widely discussed, as when tested against hsTYR, several abTYR inhibitors provide disappointing results, including some of the most extensively used depigmenting compounds now used in dermocosmetics. An in silico methodology that can be used to predict compound bioactivities is QSAR (quantitative structure-activity relationship) modelling. A QSAR model tries to find correlations between a biological activity of interest and molecular descriptors calculated from the compound structure. In this work, a QSAR model was developed to predict hsTYR inhibition activity using the PYTHON computer language and its PyQSAR package. To develop a QSAR model, a library of 196 known hsTYR inhibitors was gathered, and compounds were divided into 6 groups according to their scaffold structure. A total of 33 QSAR models were prepared using different combinations of the defined groups and different pools of molecular descriptors. QSAR model 32 was selected for further use as it presented good statistical robustness and had the highest number of compounds, 41 in total. Of the 28,933 molecular descriptors calculated by the OCHEM platform for the 41 compounds used, PyQSAR selected 4 to be used in the model: C-026; DISSM2C; MaxdssC; WHALES90_Rem. The statistical data obtained after the validation of the QSAR model by cross-validation was excellent, namely the determination coefficient (R2CV=0.9147), the value of the square root of the mean error (RMSE CV=0.1878) and the mean value of the score of the multiple linear regression method (Q2CV=0.8922). This QSAR model originates a mathematical equation that allows the prediction of hsTYR inhibition activity by new compounds with similar structures. A library of natural compounds, with a structure similar to those used to develop QSAR model 32, was created using the COCONUT database of natural compounds. A total of 1,628 natural compounds were gathered, their molecular descriptors were calculated, and the QSAR model 32 equation was applied. The results are displayed on a website and can be viewed by accessing the URL http://esa.ipb.pt/qsar/. The ZINC15 database was used to determine which of the compounds in the developed natural compound library would be available for purchase after predicting the hsTYR inhibitory activity of each compound in the library. A total of 18 different compounds were bought from different companies. To evaluate these compounds experimental ability to inhibit hsTYR and thus validate QSAR model 32, the compounds will be tested against this enzyme. If those compounds activity is confirmed, they may be used in cosmeceutical applications.A melanogénese é o processo químico responsável pela síntese da melanina, que ocorre nos melanócitos, em organelos subcelulares semelhantes aos lisossomas chamados melanossomas. A melanina desempenha um papel vital na proteção da pele dos danos causados pelos raios ultravioleta. No entanto, a produção excessiva de melanina ou distribuição anormal pode causar vários distúrbios de pigmentação, como bronzeamento excessivo, manchas senis e melasma. Distúrbios de pele como estes levaram ao desenvolvimento de compostos de clareamento da pele para reduzir o conteúdo de melanina. Além disso, a inibição da síntese de melanina é considerada uma estratégia terapêutica válida para o tratamento de melanomas melanóticos avançados A tirosinase humana (hsTYR) é a enzima mais importante envolvida no processo de melanogénese, pois catalisa, pelo menos, as suas duas primeiras etapas. A tirosinase do cogumelo branco Agaricus bisporus (abTYR) está amplamente disponível a baixo custo em fontes comerciais há várias décadas, enquanto a hsTYR ainda é cara e difícil de produzir. A importância de descobrir mais e melhores inibidores de hsTYR tem sido amplamente discutida, pois quando testados contra hsTYR, vários inibidores de abTYR fornecem resultados dececionantes, incluindo alguns dos compostos despigmentantes mais usados atualmente em dermocosméticos. Uma metodologia in silico que pode ser usada para prever bioatividades compostas é a modelação QSAR (quantitative structure-activity relationship). Um modelo QSAR tenta encontrar correlações entre uma atividade biológica de interesse e descritores moleculares calculados a partir da estrutura do composto. Neste trabalho, um modelo QSAR foi desenvolvido para prever a atividade de inibição de hsTYR usando a linguagem de computador PYTHON e seu pacote PyQSAR. Para desenvolver um modelo QSAR, uma biblioteca de 196 inibidores hsTYR conhecidos foi reunida e os compostos foram divididos em 6 grupos de acordo com sua estrutura de base. Um total de 33 modelos QSAR foram preparados usando diferentes combinações dos grupos definidos e diferentes pools de descritores moleculares. O modelo QSAR 32 foi selecionado para uso posterior por apresentar boa robustez estatística e possuir o maior número de compostos, 41 no total. Dos 28 933 descritores moleculares calculados pela plataforma OCHEM para os 41 compostos utilizados, o PyQSAR selecionou 4 para serem utilizados no modelo: C-026; DISSM2C; MaxdssC; WHALES90_Rem. Os dados estatísticos obtidos após a validação do modelo QSAR por validação cruzada foram excelentes, nomeadamente o coeficiente de correlação (R2CV=0,9147), o valor da raiz quadrada do erro médio (RMSE CV=0,1878) e o valor médio da pontuação do método de regressão linear múltipla (Q2CV=0,8922). Este modelo QSAR origina uma equação matemática que permite prever a atividade de inibição de hsTYR por novos compostos com estruturas semelhantes. Uma biblioteca de compostos naturais, com uma estrutura similar àquelas usadas para desenvolver o modelo QSAR 32, foi criada usando o banco de dados de compostos naturais COCONUT. Um total de 1 628 compostos naturais foram recolhidos, os seus descritores moleculares calculados e a equação do modelo QSAR 32 foi aplicada. Os resultados são apresentados num website criado por nós e podem ser visualizados acedendo ao URL http://esa.ipb.pt/qsar/. O banco de dados ZINC15 foi usado para determinar quais compostos na biblioteca de compostos naturais desenvolvidos estariam disponíveis para compra após prever a atividade inibitória de hsTYR de cada composto na biblioteca. Um total de 18 compostos diferentes foram comprados de diferentes empresas. Para avaliar a capacidade experimental destes compostos em inibir a hsTYR e assim validar o modelo QSAR 32, os compostos serão testados contra esta enzima. Caso a atividade desses compostos seja confirmada, eles poderão ser utilizados em aplicações cosmecêuticas.Abreu, Rui M.V.Barros, LillianBiblioteca Digital do IPBMateus, Cristiano Gabi dos Santos2023-01-11T14:57:58Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10198/26453TID:203159381enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T12:17:25Zoai:bibliotecadigital.ipb.pt:10198/26453Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:44:56.411804Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv QSAR modeling studies of a library of Human Tyrosinase inhibitors
title QSAR modeling studies of a library of Human Tyrosinase inhibitors
spellingShingle QSAR modeling studies of a library of Human Tyrosinase inhibitors
Mateus, Cristiano Gabi dos Santos
QSAR
PYTHON
PyQSAR
Molecular descriptor
Melanin
hsTYR
abTYR
OCHEM
COCONUT
ZINC15
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
title_short QSAR modeling studies of a library of Human Tyrosinase inhibitors
title_full QSAR modeling studies of a library of Human Tyrosinase inhibitors
title_fullStr QSAR modeling studies of a library of Human Tyrosinase inhibitors
title_full_unstemmed QSAR modeling studies of a library of Human Tyrosinase inhibitors
title_sort QSAR modeling studies of a library of Human Tyrosinase inhibitors
author Mateus, Cristiano Gabi dos Santos
author_facet Mateus, Cristiano Gabi dos Santos
author_role author
dc.contributor.none.fl_str_mv Abreu, Rui M.V.
Barros, Lillian
Biblioteca Digital do IPB
dc.contributor.author.fl_str_mv Mateus, Cristiano Gabi dos Santos
dc.subject.por.fl_str_mv QSAR
PYTHON
PyQSAR
Molecular descriptor
Melanin
hsTYR
abTYR
OCHEM
COCONUT
ZINC15
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
topic QSAR
PYTHON
PyQSAR
Molecular descriptor
Melanin
hsTYR
abTYR
OCHEM
COCONUT
ZINC15
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
description Melanogenesis is the chemical process responsible for synthesizing melanin, which occurs in melanocytes, in subcellular lysosome-like organelles called melanosomes. Melanin plays a vital role in protecting the skin from damage caused by ultraviolet rays. However, excess melanin production or abnormal distribution can cause various pigmentation disorders, such as over-tanning, age spots, and melasma. Skin disorders like these, have prompted the development of skin-whitening compounds to reduce melanin content. Furthermore, inhibition of melanin synthesis is considered a valid therapeutic strategy for treating advanced melanotic melanomas Human tyrosinase (hsTYR) is the most important enzyme involved in the melanogenesis process, as it catalyzes, at least, its first two steps. Tyrosinase from the white button mushroom Agaricus bisporus (abTYR) has been widely available at low cost from commercial sources for several decades, whereas hsTYR is still expensive and difficult to produce. The importance of discovering more and better hsTYR inhibitors has been widely discussed, as when tested against hsTYR, several abTYR inhibitors provide disappointing results, including some of the most extensively used depigmenting compounds now used in dermocosmetics. An in silico methodology that can be used to predict compound bioactivities is QSAR (quantitative structure-activity relationship) modelling. A QSAR model tries to find correlations between a biological activity of interest and molecular descriptors calculated from the compound structure. In this work, a QSAR model was developed to predict hsTYR inhibition activity using the PYTHON computer language and its PyQSAR package. To develop a QSAR model, a library of 196 known hsTYR inhibitors was gathered, and compounds were divided into 6 groups according to their scaffold structure. A total of 33 QSAR models were prepared using different combinations of the defined groups and different pools of molecular descriptors. QSAR model 32 was selected for further use as it presented good statistical robustness and had the highest number of compounds, 41 in total. Of the 28,933 molecular descriptors calculated by the OCHEM platform for the 41 compounds used, PyQSAR selected 4 to be used in the model: C-026; DISSM2C; MaxdssC; WHALES90_Rem. The statistical data obtained after the validation of the QSAR model by cross-validation was excellent, namely the determination coefficient (R2CV=0.9147), the value of the square root of the mean error (RMSE CV=0.1878) and the mean value of the score of the multiple linear regression method (Q2CV=0.8922). This QSAR model originates a mathematical equation that allows the prediction of hsTYR inhibition activity by new compounds with similar structures. A library of natural compounds, with a structure similar to those used to develop QSAR model 32, was created using the COCONUT database of natural compounds. A total of 1,628 natural compounds were gathered, their molecular descriptors were calculated, and the QSAR model 32 equation was applied. The results are displayed on a website and can be viewed by accessing the URL http://esa.ipb.pt/qsar/. The ZINC15 database was used to determine which of the compounds in the developed natural compound library would be available for purchase after predicting the hsTYR inhibitory activity of each compound in the library. A total of 18 different compounds were bought from different companies. To evaluate these compounds experimental ability to inhibit hsTYR and thus validate QSAR model 32, the compounds will be tested against this enzyme. If those compounds activity is confirmed, they may be used in cosmeceutical applications.
publishDate 2022
dc.date.none.fl_str_mv 2022
2022-01-01T00:00:00Z
2023-01-11T14:57:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10198/26453
TID:203159381
url http://hdl.handle.net/10198/26453
identifier_str_mv TID:203159381
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833592205428654080