Counterfactual explanations for remaining useful life estimation within a Bayesian framework

Bibliographic Details
Main Author: Andringa, Jilles
Publication Date: 2025
Other Authors: Baptista, Márcia L., Santos, Bruno F.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10362/178770
Summary: Andringa, J., Baptista, M. L., & Santos, B. F. (2025). Counterfactual explanations for remaining useful life estimation within a Bayesian framework. Information Fusion, Article 102972. https://doi.org/10.1016/j.inffus.2025.102972 --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS) (https://doi.org/10.54499/UIDB/04152/2020)
id RCAP_f195c2feba7f695a9d63f2fe17bae7cf
oai_identifier_str oai:run.unl.pt:10362/178770
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Counterfactual explanations for remaining useful life estimation within a Bayesian frameworkExplainable Artificial IntelligencePrognostics and Health ManagementC-MAPSS datasetBayesian uncertaintyCounterfactual explanationsInterpretability and explainabilityData augmentationSoftwareSignal ProcessingInformation SystemsHardware and ArchitectureAndringa, J., Baptista, M. L., & Santos, B. F. (2025). Counterfactual explanations for remaining useful life estimation within a Bayesian framework. Information Fusion, Article 102972. https://doi.org/10.1016/j.inffus.2025.102972 --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS) (https://doi.org/10.54499/UIDB/04152/2020)Machine learning has contributed to the advancement of maintenance in many industries, including aviation. In recent years, many neural network models have been proposed to address the problems of failure identification and estimating the remaining useful life (RUL). Nevertheless, the black-box nature of neural networks often limits their transparency and interpretability. Interpretability (or explainability) in maintenance refers to the ability of a predictive model to provide insights into its decision-making process for predicting failures or estimating metrics like RUL. Counterfactual Explanations (CFEs) from Explainable AI (XAI) addresses this problem by explaining model decisions through hypothetical scenarios leading to alternative outcomes. A kind of neural network that could benefit from increased interpretability is Bayesian networks. In general, Bayesian models improve interpretability by quantifying uncertainty. However, incorporating Bayesian uncertainty into neural networks adds complexity because we often need a statistical distribution for each network parameter. This study investigates the use of CFEs within a Bayesian framework to achieve two key objectives simultaneously: (1) enhance the interpretability of RUL estimations and (2) improve model accuracy. We generate two types of CFEs: (1) RUL CFEs that increase/decrease the RUL estimation and (2) uncertainty CFEs with reduced estimation uncertainty, which we use to augment the dataset and increase model accuracy. We apply this method to a classical case study, the C-MAPSS dataset, using a Bayesian Long Short-Term Memory (B-LSTM) model. We demonstrate that CFEs can help identify critical features and fine-tune corrective actions to achieve specific outcomes. For example, following a maintenance action that increased the temperature by 1°F, CFEs can reveal that this adjustment extended the equipment’s useful life by 30 cycles. This ability to correlate specific actions with effects enhances both decision-making and maintenance efficiency. Additionally, our data augmentation approach results in a 5% improvement in accuracy for a strict of 20%. The root mean square error (RMSE) of the B-LSTM model decreases from 9.56 to 8.47 cycles, demonstrating the potential of Uncertainty CFEs to improve accuracy in aircraft maintenance. The code is publicly available at Github.Information Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNAndringa, JillesBaptista, Márcia L.Santos, Bruno F.2025-02-10T21:18:57Z2025-062025-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article15application/pdfhttp://hdl.handle.net/10362/178770eng1566-2535PURE: 108627584https://doi.org/10.1016/j.inffus.2025.102972info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-31T01:54:59Zoai:run.unl.pt:10362/178770Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:39:31.291193Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Counterfactual explanations for remaining useful life estimation within a Bayesian framework
title Counterfactual explanations for remaining useful life estimation within a Bayesian framework
spellingShingle Counterfactual explanations for remaining useful life estimation within a Bayesian framework
Andringa, Jilles
Explainable Artificial Intelligence
Prognostics and Health Management
C-MAPSS dataset
Bayesian uncertainty
Counterfactual explanations
Interpretability and explainability
Data augmentation
Software
Signal Processing
Information Systems
Hardware and Architecture
title_short Counterfactual explanations for remaining useful life estimation within a Bayesian framework
title_full Counterfactual explanations for remaining useful life estimation within a Bayesian framework
title_fullStr Counterfactual explanations for remaining useful life estimation within a Bayesian framework
title_full_unstemmed Counterfactual explanations for remaining useful life estimation within a Bayesian framework
title_sort Counterfactual explanations for remaining useful life estimation within a Bayesian framework
author Andringa, Jilles
author_facet Andringa, Jilles
Baptista, Márcia L.
Santos, Bruno F.
author_role author
author2 Baptista, Márcia L.
Santos, Bruno F.
author2_role author
author
dc.contributor.none.fl_str_mv Information Management Research Center (MagIC) - NOVA Information Management School
NOVA Information Management School (NOVA IMS)
RUN
dc.contributor.author.fl_str_mv Andringa, Jilles
Baptista, Márcia L.
Santos, Bruno F.
dc.subject.por.fl_str_mv Explainable Artificial Intelligence
Prognostics and Health Management
C-MAPSS dataset
Bayesian uncertainty
Counterfactual explanations
Interpretability and explainability
Data augmentation
Software
Signal Processing
Information Systems
Hardware and Architecture
topic Explainable Artificial Intelligence
Prognostics and Health Management
C-MAPSS dataset
Bayesian uncertainty
Counterfactual explanations
Interpretability and explainability
Data augmentation
Software
Signal Processing
Information Systems
Hardware and Architecture
description Andringa, J., Baptista, M. L., & Santos, B. F. (2025). Counterfactual explanations for remaining useful life estimation within a Bayesian framework. Information Fusion, Article 102972. https://doi.org/10.1016/j.inffus.2025.102972 --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS) (https://doi.org/10.54499/UIDB/04152/2020)
publishDate 2025
dc.date.none.fl_str_mv 2025-02-10T21:18:57Z
2025-06
2025-06-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/178770
url http://hdl.handle.net/10362/178770
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1566-2535
PURE: 108627584
https://doi.org/10.1016/j.inffus.2025.102972
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 15
application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598778438844416