Parameter Control in Geometric Semantic Genetic Programming
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/174532 |
Summary: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
id |
RCAP_f1280d16befa2bd3540b8dfa71bbdb31 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/174532 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Parameter Control in Geometric Semantic Genetic ProgrammingGenetic ProgrammingGeometric Semantic Genetic ProgrammingGenetic OperatorsMutationParameter ControlDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceMachine Learning (ML) is a scientific field that aims to enable computers to learn without explicit programming. Evolutionary Algorithms (EAs), a subset of ML, mimic natural selection to evolve solutions to problems. Among EAs, Genetic Programming (GP) is one of the latest advancements, evolving computer programs to accurately transform input data into expected outputs. Moraglio et al. (2012) first introduced the Geometric Semantic Genetic Programming (GSGP) algorithm to improve upon the GP algorithm by applying genetic operators that have a known e!ect on the semantic space of the individuals. This results on a unimodal fitness landscape that allows the algorithm to have very good optimization ability. However, GSGP is not without its problems. Particularly, the usage of parameters that are shared by all individuals and remain constant throughout the evolution may inhibit or delay the obtainment of the optimal solution. In this work, the application of parameter control methods to the mutation step parameter within the Geometric Semantic Mutation (GSM) operator is proposed with the objective to solve this issue and improve GSGP’s performance. The core of this project is the creation of four di!erent mutation step variants to the standard GSGP. Other adjustments had to be made in order to implement these variants seamlessly. Particularly, the mutation step is no longer a feature of the whole population, but of each single individual, and its value is bounded by values dependent on the fitness of the individual in question. The performance of the proposed method was tested on nine regression benchmark datasets. The tests conducted show promising results for the application of parameter control to the mutation step, generally achieving better results than the standard GSGP. On the other hand, results show accentuated overfitting issues on more di"cult regression datasets.Vanneschi, LeonardoBatista, João Eduardo Silva PombinhoRUNDinis, Marta Teixeira Rumina2024-11-04T16:24:23Z2024-10-292024-10-29T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/174532TID:203796500enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-13T01:41:10Zoai:run.unl.pt:10362/174532Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:12:49.414903Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Parameter Control in Geometric Semantic Genetic Programming |
title |
Parameter Control in Geometric Semantic Genetic Programming |
spellingShingle |
Parameter Control in Geometric Semantic Genetic Programming Dinis, Marta Teixeira Rumina Genetic Programming Geometric Semantic Genetic Programming Genetic Operators Mutation Parameter Control Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
title_short |
Parameter Control in Geometric Semantic Genetic Programming |
title_full |
Parameter Control in Geometric Semantic Genetic Programming |
title_fullStr |
Parameter Control in Geometric Semantic Genetic Programming |
title_full_unstemmed |
Parameter Control in Geometric Semantic Genetic Programming |
title_sort |
Parameter Control in Geometric Semantic Genetic Programming |
author |
Dinis, Marta Teixeira Rumina |
author_facet |
Dinis, Marta Teixeira Rumina |
author_role |
author |
dc.contributor.none.fl_str_mv |
Vanneschi, Leonardo Batista, João Eduardo Silva Pombinho RUN |
dc.contributor.author.fl_str_mv |
Dinis, Marta Teixeira Rumina |
dc.subject.por.fl_str_mv |
Genetic Programming Geometric Semantic Genetic Programming Genetic Operators Mutation Parameter Control Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
topic |
Genetic Programming Geometric Semantic Genetic Programming Genetic Operators Mutation Parameter Control Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data Science |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-11-04T16:24:23Z 2024-10-29 2024-10-29T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/174532 TID:203796500 |
url |
http://hdl.handle.net/10362/174532 |
identifier_str_mv |
TID:203796500 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597945807634432 |