Deep Learning Applications in non-intrusive load monitoring
| Main Author: | |
|---|---|
| Publication Date: | 2022 |
| Format: | Master thesis |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/10400.1/18761 |
Summary: | Within the frame of the project Non-Intrusive Load Monitoring for Intelligent Home Energy Management Systems, this work will present a deep learning application in non-intrusive load monitoring on a case study in a residential home in in Gambelas, Faro in the Algarve region south of Portugal. This work has for a goal to detect type 2 appliances in different houses. For the sake of this study, two models will be trained: - Convolutional Neural Network - Long Short-term Memory Recurrent Neural Network on three datasets: - UKDale - REDD - Data from the Portuguese private residential house from the project NILM for IHEMS. |
| id |
RCAP_f0f834a701e021721b63df2d1e066caa |
|---|---|
| oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/18761 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Deep Learning Applications in non-intrusive load monitoringNILMCNNLSTMUKDaleREDDNILM for IHEMSWithin the frame of the project Non-Intrusive Load Monitoring for Intelligent Home Energy Management Systems, this work will present a deep learning application in non-intrusive load monitoring on a case study in a residential home in in Gambelas, Faro in the Algarve region south of Portugal. This work has for a goal to detect type 2 appliances in different houses. For the sake of this study, two models will be trained: - Convolutional Neural Network - Long Short-term Memory Recurrent Neural Network on three datasets: - UKDale - REDD - Data from the Portuguese private residential house from the project NILM for IHEMS.Ruano, A. E.SapientiaGaimes, Yousra2023-01-09T11:08:21Z2022-02-172022-02-17T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.1/18761urn:tid:203012046enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:39:13Zoai:sapientia.ualg.pt:10400.1/18761Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:30:28.766806Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Deep Learning Applications in non-intrusive load monitoring |
| title |
Deep Learning Applications in non-intrusive load monitoring |
| spellingShingle |
Deep Learning Applications in non-intrusive load monitoring Gaimes, Yousra NILM CNN LSTM UKDale REDD NILM for IHEMS |
| title_short |
Deep Learning Applications in non-intrusive load monitoring |
| title_full |
Deep Learning Applications in non-intrusive load monitoring |
| title_fullStr |
Deep Learning Applications in non-intrusive load monitoring |
| title_full_unstemmed |
Deep Learning Applications in non-intrusive load monitoring |
| title_sort |
Deep Learning Applications in non-intrusive load monitoring |
| author |
Gaimes, Yousra |
| author_facet |
Gaimes, Yousra |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Ruano, A. E. Sapientia |
| dc.contributor.author.fl_str_mv |
Gaimes, Yousra |
| dc.subject.por.fl_str_mv |
NILM CNN LSTM UKDale REDD NILM for IHEMS |
| topic |
NILM CNN LSTM UKDale REDD NILM for IHEMS |
| description |
Within the frame of the project Non-Intrusive Load Monitoring for Intelligent Home Energy Management Systems, this work will present a deep learning application in non-intrusive load monitoring on a case study in a residential home in in Gambelas, Faro in the Algarve region south of Portugal. This work has for a goal to detect type 2 appliances in different houses. For the sake of this study, two models will be trained: - Convolutional Neural Network - Long Short-term Memory Recurrent Neural Network on three datasets: - UKDale - REDD - Data from the Portuguese private residential house from the project NILM for IHEMS. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-02-17 2022-02-17T00:00:00Z 2023-01-09T11:08:21Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/18761 urn:tid:203012046 |
| url |
http://hdl.handle.net/10400.1/18761 |
| identifier_str_mv |
urn:tid:203012046 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833598691462610944 |