Collaborative Automated Machine Learning (AutoML) Process Framework
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/176456 |
Summary: | Chami, J. C. ., & Santos, V. . (2024). Collaborative automated machine learning (AutoML) process framework. Edelweiss Applied Science and Technology, 8(6), 7675–7685. https://doi.org/10.55214/25768484.v8i6.3676 |
id |
RCAP_ef9989a65c2d06e9186eb619045cae61 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/176456 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Collaborative Automated Machine Learning (AutoML) Process FrameworkAutomated machine learning (AutoML)Collaborative frameworkData-driven transformationDesign science researchDigital transformationSmall and medium enterprises (SMEs)GeneralSDG 8 - Decent Work and Economic GrowthSDG 9 - Industry, Innovation, and InfrastructureSDG 10 - Reduced InequalitiesSDG 17 - Partnerships for the GoalsChami, J. C. ., & Santos, V. . (2024). Collaborative automated machine learning (AutoML) process framework. Edelweiss Applied Science and Technology, 8(6), 7675–7685. https://doi.org/10.55214/25768484.v8i6.3676In the face of rapid technological advancements and digital disruption, Small and Medium Enterprises (SMEs) grapple with integrating data-driven practices essential for competitiveness and growth. Unlike large corporations, SMEs often lack the resources and technical expertise to implement sophisticated data analytics and machine learning solutions. This study addresses the identified gap by developing a Collaborative Automated Machine Learning (AutoML) Process Framework tailored to the unique needs of SMEs. Leveraging Design Science Research methodology, the research conceptualizes, designs, and validates an accessible AutoML tool that automates complex machine learning processes while fostering collaboration among stakeholders. The framework aims to democratize advanced analytics, enabling SMEs to harness domain knowledge and drive data-driven decision-making without extensive data science expertise. The findings demonstrate that the proposed collaborative AutoML framework significantly enhances SMEs' operational efficiency, decision-making capabilities, and competitive edge, thereby contributing to their digital transformation and broader economic growth. This research not only bridges the existing gap in AutoML applications for SMEs but also aligns with sustainable development goals by promoting inclusive innovation and economic resilience.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNChami, Johnas CamilliusSantos, Vítor2024-12-18T17:19:49Z2024-12-142024-12-14T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article11application/pdfhttp://hdl.handle.net/10362/176456eng2576-8484PURE: 102429715https://doi.org/10.55214/25768484.v8i6.3676info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-27T01:36:34Zoai:run.unl.pt:10362/176456Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:19:46.569704Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Collaborative Automated Machine Learning (AutoML) Process Framework |
title |
Collaborative Automated Machine Learning (AutoML) Process Framework |
spellingShingle |
Collaborative Automated Machine Learning (AutoML) Process Framework Chami, Johnas Camillius Automated machine learning (AutoML) Collaborative framework Data-driven transformation Design science research Digital transformation Small and medium enterprises (SMEs) General SDG 8 - Decent Work and Economic Growth SDG 9 - Industry, Innovation, and Infrastructure SDG 10 - Reduced Inequalities SDG 17 - Partnerships for the Goals |
title_short |
Collaborative Automated Machine Learning (AutoML) Process Framework |
title_full |
Collaborative Automated Machine Learning (AutoML) Process Framework |
title_fullStr |
Collaborative Automated Machine Learning (AutoML) Process Framework |
title_full_unstemmed |
Collaborative Automated Machine Learning (AutoML) Process Framework |
title_sort |
Collaborative Automated Machine Learning (AutoML) Process Framework |
author |
Chami, Johnas Camillius |
author_facet |
Chami, Johnas Camillius Santos, Vítor |
author_role |
author |
author2 |
Santos, Vítor |
author2_role |
author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Chami, Johnas Camillius Santos, Vítor |
dc.subject.por.fl_str_mv |
Automated machine learning (AutoML) Collaborative framework Data-driven transformation Design science research Digital transformation Small and medium enterprises (SMEs) General SDG 8 - Decent Work and Economic Growth SDG 9 - Industry, Innovation, and Infrastructure SDG 10 - Reduced Inequalities SDG 17 - Partnerships for the Goals |
topic |
Automated machine learning (AutoML) Collaborative framework Data-driven transformation Design science research Digital transformation Small and medium enterprises (SMEs) General SDG 8 - Decent Work and Economic Growth SDG 9 - Industry, Innovation, and Infrastructure SDG 10 - Reduced Inequalities SDG 17 - Partnerships for the Goals |
description |
Chami, J. C. ., & Santos, V. . (2024). Collaborative automated machine learning (AutoML) process framework. Edelweiss Applied Science and Technology, 8(6), 7675–7685. https://doi.org/10.55214/25768484.v8i6.3676 |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-12-18T17:19:49Z 2024-12-14 2024-12-14T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/176456 |
url |
http://hdl.handle.net/10362/176456 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2576-8484 PURE: 102429715 https://doi.org/10.55214/25768484.v8i6.3676 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
11 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833598022634700800 |