A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation

Bibliographic Details
Main Author: ur Rehman, Ubaid
Publication Date: 2022
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.22/21231
Summary: In this paper, we propose an optimal hierarchical bi-directional aggregation algorithm for the electric vehicles (EVs) integration in the smart grid (SG) using Vehicle to Grid (V2G) technology through a network of Charging Stations (CSs). The proposed model forecasts the power demand and performs Day-ahead (DA) load scheduling in the SG by optimizing EVs charging/discharging tasks. This method uses EVs and CSs as the voltage and frequency stabilizing tools in the SG. Before penetrating EVs in the V2G mode, this algorithm determines the on arrival EVs State of Charge (SOC) at CS, obtains projected park/departure time information from EV owners, evaluates their battery degradation cost prior to charging. After obtaining all necessary data, it either uses EV in the V2G mode to regulates the SG or charge it according to the owner request but, it ensure desired SOC on departure. The robustness of the proposed algorithm has been tested by using IEEE-32 Bus-Bars based power distribution in which EVs are integrated through five CSs. Two intense case studies have been carried out for the appropriate performance validation of the proposed algorithm. Simulations are performed using electricity pricing data from PJM and to test the EVs behaviour 3 types of EVs having different specifications are penetrated. Simulation results have proved that the proposed model is capable of integrating EVs in the voltage and frequency stabilization and it also simultaneously minimizes approximately $1500 in term of charging cost for EVs contributing in the V2G mode each day. Particularly, during peak hours this algorithm provides effective grid stabilization services.
id RCAP_ee5b4fdca56b0d7b5b685f80e3c0d143
oai_identifier_str oai:recipp.ipp.pt:10400.22/21231
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulationElectric VehiclesAggregation systemLoad stabilizationFrequency stabilizationEVs charging stationsSmart gridIn this paper, we propose an optimal hierarchical bi-directional aggregation algorithm for the electric vehicles (EVs) integration in the smart grid (SG) using Vehicle to Grid (V2G) technology through a network of Charging Stations (CSs). The proposed model forecasts the power demand and performs Day-ahead (DA) load scheduling in the SG by optimizing EVs charging/discharging tasks. This method uses EVs and CSs as the voltage and frequency stabilizing tools in the SG. Before penetrating EVs in the V2G mode, this algorithm determines the on arrival EVs State of Charge (SOC) at CS, obtains projected park/departure time information from EV owners, evaluates their battery degradation cost prior to charging. After obtaining all necessary data, it either uses EV in the V2G mode to regulates the SG or charge it according to the owner request but, it ensure desired SOC on departure. The robustness of the proposed algorithm has been tested by using IEEE-32 Bus-Bars based power distribution in which EVs are integrated through five CSs. Two intense case studies have been carried out for the appropriate performance validation of the proposed algorithm. Simulations are performed using electricity pricing data from PJM and to test the EVs behaviour 3 types of EVs having different specifications are penetrated. Simulation results have proved that the proposed model is capable of integrating EVs in the voltage and frequency stabilization and it also simultaneously minimizes approximately $1500 in term of charging cost for EVs contributing in the V2G mode each day. Particularly, during peak hours this algorithm provides effective grid stabilization services.ElsevierREPOSITÓRIO P.PORTOur Rehman, Ubaid2022-12-21T12:36:01Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/21231eng10.1016/j.ijepes.2022.108090info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-02T03:28:00Zoai:recipp.ipp.pt:10400.22/21231Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:57:12.536063Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation
title A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation
spellingShingle A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation
ur Rehman, Ubaid
Electric Vehicles
Aggregation system
Load stabilization
Frequency stabilization
EVs charging stations
Smart grid
title_short A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation
title_full A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation
title_fullStr A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation
title_full_unstemmed A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation
title_sort A robust vehicle to grid aggregation framework for electric vehicles charging cost minimization and for smart grid regulation
author ur Rehman, Ubaid
author_facet ur Rehman, Ubaid
author_role author
dc.contributor.none.fl_str_mv REPOSITÓRIO P.PORTO
dc.contributor.author.fl_str_mv ur Rehman, Ubaid
dc.subject.por.fl_str_mv Electric Vehicles
Aggregation system
Load stabilization
Frequency stabilization
EVs charging stations
Smart grid
topic Electric Vehicles
Aggregation system
Load stabilization
Frequency stabilization
EVs charging stations
Smart grid
description In this paper, we propose an optimal hierarchical bi-directional aggregation algorithm for the electric vehicles (EVs) integration in the smart grid (SG) using Vehicle to Grid (V2G) technology through a network of Charging Stations (CSs). The proposed model forecasts the power demand and performs Day-ahead (DA) load scheduling in the SG by optimizing EVs charging/discharging tasks. This method uses EVs and CSs as the voltage and frequency stabilizing tools in the SG. Before penetrating EVs in the V2G mode, this algorithm determines the on arrival EVs State of Charge (SOC) at CS, obtains projected park/departure time information from EV owners, evaluates their battery degradation cost prior to charging. After obtaining all necessary data, it either uses EV in the V2G mode to regulates the SG or charge it according to the owner request but, it ensure desired SOC on departure. The robustness of the proposed algorithm has been tested by using IEEE-32 Bus-Bars based power distribution in which EVs are integrated through five CSs. Two intense case studies have been carried out for the appropriate performance validation of the proposed algorithm. Simulations are performed using electricity pricing data from PJM and to test the EVs behaviour 3 types of EVs having different specifications are penetrated. Simulation results have proved that the proposed model is capable of integrating EVs in the voltage and frequency stabilization and it also simultaneously minimizes approximately $1500 in term of charging cost for EVs contributing in the V2G mode each day. Particularly, during peak hours this algorithm provides effective grid stabilization services.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-21T12:36:01Z
2022
2022-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/21231
url http://hdl.handle.net/10400.22/21231
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1016/j.ijepes.2022.108090
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600771926523904