Product recommendation based on shared customer's behaviour

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Fátima
Data de Publicação: 2016
Outros Autores: Ferreira, Bruno
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.22/10025
Resumo: Today consumers are exposed to an increasing variety of products and information never seen before. This leads to an increasing diversity of consumers’ demand, turning into a challenge for a retail store to provide the right products accordingly to customer preferences. Recommender systems are a tool to cope with this challenge, through product recommendation it is possible to fulfill customers’ needs and expectations, helping maintaining loyal customers while attracting new customers. However the huge size of transactional databases typical of retail business reduces the efficiency and quality of recommendations. In this paper a hybrid recommendation system that combines content-based, collaborative filtering and data mining techniques is proposed to surpass these difficulties. The recommendation algorithm starts to obtain similar groups of customers using customer lifetime value. Next an association rule mining approach based on similar shopping baskets of customers of the same cluster, in a specific time period is implemented in order to provide more assertive and personalized customer product recommendations. The algorithm was tested with data from a chain of perfumeries. The experimental results show that the proposed algorithm when compared with a base recommendation (made solely on past purchases of customers) can increase the value of the sales without losing recommendation accuracy.
id RCAP_ee35a51bcd64cc39ea73a8b3f7345440
oai_identifier_str oai:recipp.ipp.pt:10400.22/10025
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Product recommendation based on shared customer's behaviourClusteringMarket basketAssociation rulesProduct recommendationToday consumers are exposed to an increasing variety of products and information never seen before. This leads to an increasing diversity of consumers’ demand, turning into a challenge for a retail store to provide the right products accordingly to customer preferences. Recommender systems are a tool to cope with this challenge, through product recommendation it is possible to fulfill customers’ needs and expectations, helping maintaining loyal customers while attracting new customers. However the huge size of transactional databases typical of retail business reduces the efficiency and quality of recommendations. In this paper a hybrid recommendation system that combines content-based, collaborative filtering and data mining techniques is proposed to surpass these difficulties. The recommendation algorithm starts to obtain similar groups of customers using customer lifetime value. Next an association rule mining approach based on similar shopping baskets of customers of the same cluster, in a specific time period is implemented in order to provide more assertive and personalized customer product recommendations. The algorithm was tested with data from a chain of perfumeries. The experimental results show that the proposed algorithm when compared with a base recommendation (made solely on past purchases of customers) can increase the value of the sales without losing recommendation accuracy.ElsevierREPOSITÓRIO P.PORTORodrigues, FátimaFerreira, Bruno2017-07-13T10:04:50Z20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/10025eng10.1016/j.procs.2016.09.133info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-02T03:08:05Zoai:recipp.ipp.pt:10400.22/10025Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:43:40.211372Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Product recommendation based on shared customer's behaviour
title Product recommendation based on shared customer's behaviour
spellingShingle Product recommendation based on shared customer's behaviour
Rodrigues, Fátima
Clustering
Market basket
Association rules
Product recommendation
title_short Product recommendation based on shared customer's behaviour
title_full Product recommendation based on shared customer's behaviour
title_fullStr Product recommendation based on shared customer's behaviour
title_full_unstemmed Product recommendation based on shared customer's behaviour
title_sort Product recommendation based on shared customer's behaviour
author Rodrigues, Fátima
author_facet Rodrigues, Fátima
Ferreira, Bruno
author_role author
author2 Ferreira, Bruno
author2_role author
dc.contributor.none.fl_str_mv REPOSITÓRIO P.PORTO
dc.contributor.author.fl_str_mv Rodrigues, Fátima
Ferreira, Bruno
dc.subject.por.fl_str_mv Clustering
Market basket
Association rules
Product recommendation
topic Clustering
Market basket
Association rules
Product recommendation
description Today consumers are exposed to an increasing variety of products and information never seen before. This leads to an increasing diversity of consumers’ demand, turning into a challenge for a retail store to provide the right products accordingly to customer preferences. Recommender systems are a tool to cope with this challenge, through product recommendation it is possible to fulfill customers’ needs and expectations, helping maintaining loyal customers while attracting new customers. However the huge size of transactional databases typical of retail business reduces the efficiency and quality of recommendations. In this paper a hybrid recommendation system that combines content-based, collaborative filtering and data mining techniques is proposed to surpass these difficulties. The recommendation algorithm starts to obtain similar groups of customers using customer lifetime value. Next an association rule mining approach based on similar shopping baskets of customers of the same cluster, in a specific time period is implemented in order to provide more assertive and personalized customer product recommendations. The algorithm was tested with data from a chain of perfumeries. The experimental results show that the proposed algorithm when compared with a base recommendation (made solely on past purchases of customers) can increase the value of the sales without losing recommendation accuracy.
publishDate 2016
dc.date.none.fl_str_mv 2016
2016-01-01T00:00:00Z
2017-07-13T10:04:50Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/10025
url http://hdl.handle.net/10400.22/10025
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1016/j.procs.2016.09.133
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600668716236800