Using Machine Learning Models to predict high school student’s Academic Achievement
Main Author: | |
---|---|
Publication Date: | 2024 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/174256 |
Summary: | Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business Analytics |
id |
RCAP_ebe9eb927459489ab48e918f6edde3da |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/174256 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Using Machine Learning Models to predict high school student’s Academic AchievementEducationAcademic AchievementArtificial IntelligenceMachine LearningSDG 4 - Quality educationSDG 5 - Gender equalitySDG 10 - Reduced inequalitiesDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoDissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business AnalyticsUnderstanding student dropout has become increasingly relevant given the growing importance of educated people in today’s workforce. Therefore, predicting a student’s academic achievement (AA), whether he/she passes the academic year or not, can prove crucial to assisting teachers and competent decision-makersto create measures to help retain and eventually reduce academic abandonment. To address such issues, this paper utilizes Machine Learning (ML) models to obtain accurate predictions of essentially every student’s AA in Portuguese public high schools using data from the Portuguese Ministry of Education and understand what are the drivers of AA that most affect the predictive abilities of said models. Our results show that Random Forest and XGBoost have similar levels of accuracy, however, the latter displayed slightly better predictions. Regarding the most influential AA drivers, previous retention, gender, and the location of the student’s school were the ones that showed the greatest effect on the XGBoost model’s ability to accurately predict the student’s success. Several suggestions are made to educational stakeholders on the results of this study.Jesus, Frederico Miguel Campos Cruz Ribeiro deRUNQuintino, Afonso João Mendes2024-10-29T14:30:42Z2024-10-232024-10-23T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/174256TID:203777034enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-01-13T01:40:35Zoai:run.unl.pt:10362/174256Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T19:12:39.281721Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Using Machine Learning Models to predict high school student’s Academic Achievement |
title |
Using Machine Learning Models to predict high school student’s Academic Achievement |
spellingShingle |
Using Machine Learning Models to predict high school student’s Academic Achievement Quintino, Afonso João Mendes Education Academic Achievement Artificial Intelligence Machine Learning SDG 4 - Quality education SDG 5 - Gender equality SDG 10 - Reduced inequalities Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
title_short |
Using Machine Learning Models to predict high school student’s Academic Achievement |
title_full |
Using Machine Learning Models to predict high school student’s Academic Achievement |
title_fullStr |
Using Machine Learning Models to predict high school student’s Academic Achievement |
title_full_unstemmed |
Using Machine Learning Models to predict high school student’s Academic Achievement |
title_sort |
Using Machine Learning Models to predict high school student’s Academic Achievement |
author |
Quintino, Afonso João Mendes |
author_facet |
Quintino, Afonso João Mendes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Jesus, Frederico Miguel Campos Cruz Ribeiro de RUN |
dc.contributor.author.fl_str_mv |
Quintino, Afonso João Mendes |
dc.subject.por.fl_str_mv |
Education Academic Achievement Artificial Intelligence Machine Learning SDG 4 - Quality education SDG 5 - Gender equality SDG 10 - Reduced inequalities Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
topic |
Education Academic Achievement Artificial Intelligence Machine Learning SDG 4 - Quality education SDG 5 - Gender equality SDG 10 - Reduced inequalities Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business Analytics |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10-29T14:30:42Z 2024-10-23 2024-10-23T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/174256 TID:203777034 |
url |
http://hdl.handle.net/10362/174256 |
identifier_str_mv |
TID:203777034 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597942945021952 |