A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results

Bibliographic Details
Main Author: Silva, Renata
Publication Date: 2008
Other Authors: Ulbrich, Michael, Ulbrich, Stefan, Vicente, Luís Nunes
Format: Other
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/11218
Summary: In this paper we prove global convergence for first and second-order stationarity points of a class of derivative-free trust-region methods for unconstrained optimization. These methods are based on the sequential minimization of linear or quadratic models built from evaluating the objective function at sample sets. The derivative-free models are required to satisfy Taylor-type bounds but, apart from that, the analysis is independent of the sampling techniques. A number of new issues are addressed, including global convergence when acceptance of iterates is based on simple decrease of the objective function, trust-region radius maintenance at the criticality step, and global convergence for second-order critical points.
id RCAP_eb58109e1def47d86f21bcb5ff446a97
oai_identifier_str oai:estudogeral.uc.pt:10316/11218
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational resultsInterior-point methodsPrimal-dualFilterGlobal convergenceLargescale NLPIn this paper we prove global convergence for first and second-order stationarity points of a class of derivative-free trust-region methods for unconstrained optimization. These methods are based on the sequential minimization of linear or quadratic models built from evaluating the objective function at sample sets. The derivative-free models are required to satisfy Taylor-type bounds but, apart from that, the analysis is independent of the sampling techniques. A number of new issues are addressed, including global convergence when acceptance of iterates is based on simple decrease of the objective function, trust-region radius maintenance at the criticality step, and global convergence for second-order critical points.FCT POCI/MAT/59442/2004, PTDC/MAT/64838/2006; ESA contract AS-2007-09-003; Sonderforschungsbereich 666 funded by Deutsche ForschungsgemeinschaftCentro de Matemática da Universidade de Coimbra2008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://hdl.handle.net/10316/11218https://hdl.handle.net/10316/11218engPré-Publicações DMUC. 08-49 (2008)Silva, RenataUlbrich, MichaelUlbrich, StefanVicente, Luís Nunesinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2020-05-25T13:11:14Zoai:estudogeral.uc.pt:10316/11218Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:23:16.791908Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results
title A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results
spellingShingle A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results
Silva, Renata
Interior-point methods
Primal-dual
Filter
Global convergence
Largescale NLP
title_short A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results
title_full A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results
title_fullStr A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results
title_full_unstemmed A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results
title_sort A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results
author Silva, Renata
author_facet Silva, Renata
Ulbrich, Michael
Ulbrich, Stefan
Vicente, Luís Nunes
author_role author
author2 Ulbrich, Michael
Ulbrich, Stefan
Vicente, Luís Nunes
author2_role author
author
author
dc.contributor.author.fl_str_mv Silva, Renata
Ulbrich, Michael
Ulbrich, Stefan
Vicente, Luís Nunes
dc.subject.por.fl_str_mv Interior-point methods
Primal-dual
Filter
Global convergence
Largescale NLP
topic Interior-point methods
Primal-dual
Filter
Global convergence
Largescale NLP
description In this paper we prove global convergence for first and second-order stationarity points of a class of derivative-free trust-region methods for unconstrained optimization. These methods are based on the sequential minimization of linear or quadratic models built from evaluating the objective function at sample sets. The derivative-free models are required to satisfy Taylor-type bounds but, apart from that, the analysis is independent of the sampling techniques. A number of new issues are addressed, including global convergence when acceptance of iterates is based on simple decrease of the objective function, trust-region radius maintenance at the criticality step, and global convergence for second-order critical points.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/other
format other
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/11218
https://hdl.handle.net/10316/11218
url https://hdl.handle.net/10316/11218
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Pré-Publicações DMUC. 08-49 (2008)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Centro de Matemática da Universidade de Coimbra
publisher.none.fl_str_mv Centro de Matemática da Universidade de Coimbra
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602338857680896