A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results
| Main Author: | |
|---|---|
| Publication Date: | 2008 |
| Other Authors: | , , |
| Format: | Other |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | https://hdl.handle.net/10316/11218 |
Summary: | In this paper we prove global convergence for first and second-order stationarity points of a class of derivative-free trust-region methods for unconstrained optimization. These methods are based on the sequential minimization of linear or quadratic models built from evaluating the objective function at sample sets. The derivative-free models are required to satisfy Taylor-type bounds but, apart from that, the analysis is independent of the sampling techniques. A number of new issues are addressed, including global convergence when acceptance of iterates is based on simple decrease of the objective function, trust-region radius maintenance at the criticality step, and global convergence for second-order critical points. |
| id |
RCAP_eb58109e1def47d86f21bcb5ff446a97 |
|---|---|
| oai_identifier_str |
oai:estudogeral.uc.pt:10316/11218 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational resultsInterior-point methodsPrimal-dualFilterGlobal convergenceLargescale NLPIn this paper we prove global convergence for first and second-order stationarity points of a class of derivative-free trust-region methods for unconstrained optimization. These methods are based on the sequential minimization of linear or quadratic models built from evaluating the objective function at sample sets. The derivative-free models are required to satisfy Taylor-type bounds but, apart from that, the analysis is independent of the sampling techniques. A number of new issues are addressed, including global convergence when acceptance of iterates is based on simple decrease of the objective function, trust-region radius maintenance at the criticality step, and global convergence for second-order critical points.FCT POCI/MAT/59442/2004, PTDC/MAT/64838/2006; ESA contract AS-2007-09-003; Sonderforschungsbereich 666 funded by Deutsche ForschungsgemeinschaftCentro de Matemática da Universidade de Coimbra2008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://hdl.handle.net/10316/11218https://hdl.handle.net/10316/11218engPré-Publicações DMUC. 08-49 (2008)Silva, RenataUlbrich, MichaelUlbrich, StefanVicente, Luís Nunesinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2020-05-25T13:11:14Zoai:estudogeral.uc.pt:10316/11218Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:23:16.791908Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results |
| title |
A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results |
| spellingShingle |
A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results Silva, Renata Interior-point methods Primal-dual Filter Global convergence Largescale NLP |
| title_short |
A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results |
| title_full |
A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results |
| title_fullStr |
A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results |
| title_full_unstemmed |
A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results |
| title_sort |
A globally convergent primal-dual interior-point filter method for nonlinear programming: new filter optimality measures and computational results |
| author |
Silva, Renata |
| author_facet |
Silva, Renata Ulbrich, Michael Ulbrich, Stefan Vicente, Luís Nunes |
| author_role |
author |
| author2 |
Ulbrich, Michael Ulbrich, Stefan Vicente, Luís Nunes |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Silva, Renata Ulbrich, Michael Ulbrich, Stefan Vicente, Luís Nunes |
| dc.subject.por.fl_str_mv |
Interior-point methods Primal-dual Filter Global convergence Largescale NLP |
| topic |
Interior-point methods Primal-dual Filter Global convergence Largescale NLP |
| description |
In this paper we prove global convergence for first and second-order stationarity points of a class of derivative-free trust-region methods for unconstrained optimization. These methods are based on the sequential minimization of linear or quadratic models built from evaluating the objective function at sample sets. The derivative-free models are required to satisfy Taylor-type bounds but, apart from that, the analysis is independent of the sampling techniques. A number of new issues are addressed, including global convergence when acceptance of iterates is based on simple decrease of the objective function, trust-region radius maintenance at the criticality step, and global convergence for second-order critical points. |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/other |
| format |
other |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10316/11218 https://hdl.handle.net/10316/11218 |
| url |
https://hdl.handle.net/10316/11218 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Pré-Publicações DMUC. 08-49 (2008) |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Centro de Matemática da Universidade de Coimbra |
| publisher.none.fl_str_mv |
Centro de Matemática da Universidade de Coimbra |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833602338857680896 |