Bike-sharing mobility patterns: a data-driven analysis for the city of Lisbon
Main Author: | |
---|---|
Publication Date: | 2021 |
Other Authors: | , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10071/22540 |
Summary: | New technologies applied to transportation services in the city, enable the shift to sustainable transportation modes making bike-sharing systems (BSS) more popular in the urban mobility scenario. This study focuses on understanding the spatiotemporal station and trip activity patterns in the Lisbon BSS, based in 2018 data taken as the baseline, and understand trip rate changes in such system, that happened in the following years of 2019 and 2020. Furthermore, our paper aims to understand the COVID-19 pandemic impact in BSS mobility patterns. In this paper, we analyzed large datasets adopting a CRISP-DM data mining method. By studying and identifying spatiotemporal distribution of trips through stations, combined with weather factors, we looked at BSS improvements more suitable to accommodate users’ demand. Our major contribution was a new insight on how people move in the city using bikes, via a data science approach using BSS network usage data. Major findings show that most bike trips occur on weekdays, with no precipitation, and we observed a substantial growth of trip count, during the observed time frame, although cut short by the pandemic. We believe that our approach can be applied to any city with available urban mobility data. |
id |
RCAP_eab50699cecc17e04764d43b8e93e9a5 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/22540 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Bike-sharing mobility patterns: a data-driven analysis for the city of LisbonBike-sharing systemUrban mobility patternsStatistical analysisCluster analysisNew technologies applied to transportation services in the city, enable the shift to sustainable transportation modes making bike-sharing systems (BSS) more popular in the urban mobility scenario. This study focuses on understanding the spatiotemporal station and trip activity patterns in the Lisbon BSS, based in 2018 data taken as the baseline, and understand trip rate changes in such system, that happened in the following years of 2019 and 2020. Furthermore, our paper aims to understand the COVID-19 pandemic impact in BSS mobility patterns. In this paper, we analyzed large datasets adopting a CRISP-DM data mining method. By studying and identifying spatiotemporal distribution of trips through stations, combined with weather factors, we looked at BSS improvements more suitable to accommodate users’ demand. Our major contribution was a new insight on how people move in the city using bikes, via a data science approach using BSS network usage data. Major findings show that most bike trips occur on weekdays, with no precipitation, and we observed a substantial growth of trip count, during the observed time frame, although cut short by the pandemic. We believe that our approach can be applied to any city with available urban mobility data.European Alliance for Innovation2021-05-07T15:06:02Z2021-01-01T00:00:00Z20212021-10-27T15:00:54Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/22540eng2518-389310.4108/eai.4-5-2021.169580Albuquerque, V.Andrade, F.Ferreira, J.Dias, J.Bacao, F.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T03:57:37Zoai:repositorio.iscte-iul.pt:10071/22540Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:35:22.686317Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Bike-sharing mobility patterns: a data-driven analysis for the city of Lisbon |
title |
Bike-sharing mobility patterns: a data-driven analysis for the city of Lisbon |
spellingShingle |
Bike-sharing mobility patterns: a data-driven analysis for the city of Lisbon Albuquerque, V. Bike-sharing system Urban mobility patterns Statistical analysis Cluster analysis |
title_short |
Bike-sharing mobility patterns: a data-driven analysis for the city of Lisbon |
title_full |
Bike-sharing mobility patterns: a data-driven analysis for the city of Lisbon |
title_fullStr |
Bike-sharing mobility patterns: a data-driven analysis for the city of Lisbon |
title_full_unstemmed |
Bike-sharing mobility patterns: a data-driven analysis for the city of Lisbon |
title_sort |
Bike-sharing mobility patterns: a data-driven analysis for the city of Lisbon |
author |
Albuquerque, V. |
author_facet |
Albuquerque, V. Andrade, F. Ferreira, J. Dias, J. Bacao, F. |
author_role |
author |
author2 |
Andrade, F. Ferreira, J. Dias, J. Bacao, F. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Albuquerque, V. Andrade, F. Ferreira, J. Dias, J. Bacao, F. |
dc.subject.por.fl_str_mv |
Bike-sharing system Urban mobility patterns Statistical analysis Cluster analysis |
topic |
Bike-sharing system Urban mobility patterns Statistical analysis Cluster analysis |
description |
New technologies applied to transportation services in the city, enable the shift to sustainable transportation modes making bike-sharing systems (BSS) more popular in the urban mobility scenario. This study focuses on understanding the spatiotemporal station and trip activity patterns in the Lisbon BSS, based in 2018 data taken as the baseline, and understand trip rate changes in such system, that happened in the following years of 2019 and 2020. Furthermore, our paper aims to understand the COVID-19 pandemic impact in BSS mobility patterns. In this paper, we analyzed large datasets adopting a CRISP-DM data mining method. By studying and identifying spatiotemporal distribution of trips through stations, combined with weather factors, we looked at BSS improvements more suitable to accommodate users’ demand. Our major contribution was a new insight on how people move in the city using bikes, via a data science approach using BSS network usage data. Major findings show that most bike trips occur on weekdays, with no precipitation, and we observed a substantial growth of trip count, during the observed time frame, although cut short by the pandemic. We believe that our approach can be applied to any city with available urban mobility data. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-07T15:06:02Z 2021-01-01T00:00:00Z 2021 2021-10-27T15:00:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/22540 |
url |
http://hdl.handle.net/10071/22540 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2518-3893 10.4108/eai.4-5-2021.169580 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
European Alliance for Innovation |
publisher.none.fl_str_mv |
European Alliance for Innovation |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597528011964416 |