Ubiquitous Self-Organizing Maps

Detalhes bibliográficos
Autor(a) principal: Silva, Bruno
Data de Publicação: 2014
Outros Autores: Marques, Nuno
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.26/6792
Resumo: Knowledge discovery in ubiquitous environments are usually conditioned by the data stream model, e.g., data is potentially infinite, arrives continuously and is subject to concept drift. These factors present additional challenges to standard data mining algorithms. Artificial Neural Networks (ANN) models are still poorly explored in these settings. State-of-the-art methods to deal with data streams are single-pass modifications of standard algorithms, e.g., Kmeans for clustering, and involve some relaxation of the quality of the results, i.e., since the data cannot be revisited to refine the models, the goal is to achieve good approximations [Gama, 2010]. In [Guha et al., 2003] an improved single pass k-means algorithm is proposed. However, k-means suffers from the problem that the initial k clusters have to be set either randomly or through other methods. This has a strong impact on the quality of the clustering process. CluStream [Aggarwal et al., 2003] is a framework that targets high-dimensional data streams in a two-phased approach, where an online phase produces micro-clusterings of the incoming data, while producing on-demand offline models of data also with k-means. In this position paper we address the use of Self-Organizing Maps (SOM) [Kohonen, 1982] and argue its strengths over current methods and directions to be explored on its adaptation to ubiquitous environments, which involve dynamic estimation of the learning parameters based on measuring concept drift on, usually, non-stationary underlying distributions. In a previous work [Silva and Marques, 2012] we presented a neural network-based framework for data stream mining that explored the two-phased methodology, where the SOM produced offline models. In this paper we advocate the development of a standalone Ubiquitous SOM (UbiSOM), that is capable of producing models in an online fashion, to be integrated in the framework. This allows derived knowledge to be accessible at any time.
id RCAP_ea83ef5c53bc3a0938a3da7d80083e01
oai_identifier_str oai:comum.rcaap.pt:10400.26/6792
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Ubiquitous Self-Organizing MapsSOMUbiquitous environmentsUbiSOMKnowledge discovery in ubiquitous environments are usually conditioned by the data stream model, e.g., data is potentially infinite, arrives continuously and is subject to concept drift. These factors present additional challenges to standard data mining algorithms. Artificial Neural Networks (ANN) models are still poorly explored in these settings. State-of-the-art methods to deal with data streams are single-pass modifications of standard algorithms, e.g., Kmeans for clustering, and involve some relaxation of the quality of the results, i.e., since the data cannot be revisited to refine the models, the goal is to achieve good approximations [Gama, 2010]. In [Guha et al., 2003] an improved single pass k-means algorithm is proposed. However, k-means suffers from the problem that the initial k clusters have to be set either randomly or through other methods. This has a strong impact on the quality of the clustering process. CluStream [Aggarwal et al., 2003] is a framework that targets high-dimensional data streams in a two-phased approach, where an online phase produces micro-clusterings of the incoming data, while producing on-demand offline models of data also with k-means. In this position paper we address the use of Self-Organizing Maps (SOM) [Kohonen, 1982] and argue its strengths over current methods and directions to be explored on its adaptation to ubiquitous environments, which involve dynamic estimation of the learning parameters based on measuring concept drift on, usually, non-stationary underlying distributions. In a previous work [Silva and Marques, 2012] we presented a neural network-based framework for data stream mining that explored the two-phased methodology, where the SOM produced offline models. In this paper we advocate the development of a standalone Ubiquitous SOM (UbiSOM), that is capable of producing models in an online fashion, to be integrated in the framework. This allows derived knowledge to be accessible at any time.Repositório ComumSilva, BrunoMarques, Nuno2014-10-08T15:39:05Z2014-08-032014-08-03T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.26/6792enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-02T16:46:14Zoai:comum.rcaap.pt:10400.26/6792Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:56:39.062296Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Ubiquitous Self-Organizing Maps
title Ubiquitous Self-Organizing Maps
spellingShingle Ubiquitous Self-Organizing Maps
Silva, Bruno
SOM
Ubiquitous environments
UbiSOM
title_short Ubiquitous Self-Organizing Maps
title_full Ubiquitous Self-Organizing Maps
title_fullStr Ubiquitous Self-Organizing Maps
title_full_unstemmed Ubiquitous Self-Organizing Maps
title_sort Ubiquitous Self-Organizing Maps
author Silva, Bruno
author_facet Silva, Bruno
Marques, Nuno
author_role author
author2 Marques, Nuno
author2_role author
dc.contributor.none.fl_str_mv Repositório Comum
dc.contributor.author.fl_str_mv Silva, Bruno
Marques, Nuno
dc.subject.por.fl_str_mv SOM
Ubiquitous environments
UbiSOM
topic SOM
Ubiquitous environments
UbiSOM
description Knowledge discovery in ubiquitous environments are usually conditioned by the data stream model, e.g., data is potentially infinite, arrives continuously and is subject to concept drift. These factors present additional challenges to standard data mining algorithms. Artificial Neural Networks (ANN) models are still poorly explored in these settings. State-of-the-art methods to deal with data streams are single-pass modifications of standard algorithms, e.g., Kmeans for clustering, and involve some relaxation of the quality of the results, i.e., since the data cannot be revisited to refine the models, the goal is to achieve good approximations [Gama, 2010]. In [Guha et al., 2003] an improved single pass k-means algorithm is proposed. However, k-means suffers from the problem that the initial k clusters have to be set either randomly or through other methods. This has a strong impact on the quality of the clustering process. CluStream [Aggarwal et al., 2003] is a framework that targets high-dimensional data streams in a two-phased approach, where an online phase produces micro-clusterings of the incoming data, while producing on-demand offline models of data also with k-means. In this position paper we address the use of Self-Organizing Maps (SOM) [Kohonen, 1982] and argue its strengths over current methods and directions to be explored on its adaptation to ubiquitous environments, which involve dynamic estimation of the learning parameters based on measuring concept drift on, usually, non-stationary underlying distributions. In a previous work [Silva and Marques, 2012] we presented a neural network-based framework for data stream mining that explored the two-phased methodology, where the SOM produced offline models. In this paper we advocate the development of a standalone Ubiquitous SOM (UbiSOM), that is capable of producing models in an online fashion, to be integrated in the framework. This allows derived knowledge to be accessible at any time.
publishDate 2014
dc.date.none.fl_str_mv 2014-10-08T15:39:05Z
2014-08-03
2014-08-03T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.26/6792
url http://hdl.handle.net/10400.26/6792
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602835404554240