Natural fibres as reinforcement strategy on cork-polymer composites
| Main Author: | |
|---|---|
| Publication Date: | 2013 |
| Other Authors: | , , |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/1822/22776 |
Summary: | Cork powder, the most important sub-product of cork processing, combined with thermoplastic matrixes like, high density polyethylene (HDPE), offer a new class of cork-polymer composite (CPC) materials with high added-value. Therefore, reinforcing strategies must be considered to increase the mechanical performance, especially when high content of cork powder is added to the formulation. Coconut fibres have several advantages, such as, low density, renewable source, low cost and biodegradability. The use of these fibres on the reinforcement of CPC materials will not only contribute to improve the mechanical performance but also for increasing the amount of natural component present on the final composition. The main goal of this work was to prepare HDPE/cork (50-50 wt.%) composites reinforced with discontinuous coconut fibres (5 and 10 wt.%) with and without the addition of coupling agent (2 wt.%) by extrusion. The developed reinforced cork based composites were characterized regarding its morphology and mechanical performance. Optical micrographs have shown a homogeneous distribution of the fibres. The coupling agent effect on CPC performance was also investigated. The tensile strength and tensile modulus of the reinforced composites were significantly improved with the addition of coupling agent. The use of 10 wt.% of coconut fibres in the presence of coupling agent promote an increase on maximum tensile strength of around 41 % comparing with the HDPE/cork (50-50 wt.%) composites. Scanning electron microscopy (SEM) micrographs of the tensile fractured specimens confirmed that the use of coupling agent promoted the interfacial adhesion between the fibres and the thermoplastic matrix. Since, like cork powder, coconut fibres have good thermal and acoustic properties, we consider that the novel reinforced CPC herein described have high potential to be used in building and construction systems and other structural 3D applications. |
| id |
RCAP_ea77ee2b0ab8f36988bcc7f467c8a608 |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/22776 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Natural fibres as reinforcement strategy on cork-polymer compositesCorkCork compositesNatural fibresMechanical propertiesMorphologyReinforcementScience & TechnologyCork powder, the most important sub-product of cork processing, combined with thermoplastic matrixes like, high density polyethylene (HDPE), offer a new class of cork-polymer composite (CPC) materials with high added-value. Therefore, reinforcing strategies must be considered to increase the mechanical performance, especially when high content of cork powder is added to the formulation. Coconut fibres have several advantages, such as, low density, renewable source, low cost and biodegradability. The use of these fibres on the reinforcement of CPC materials will not only contribute to improve the mechanical performance but also for increasing the amount of natural component present on the final composition. The main goal of this work was to prepare HDPE/cork (50-50 wt.%) composites reinforced with discontinuous coconut fibres (5 and 10 wt.%) with and without the addition of coupling agent (2 wt.%) by extrusion. The developed reinforced cork based composites were characterized regarding its morphology and mechanical performance. Optical micrographs have shown a homogeneous distribution of the fibres. The coupling agent effect on CPC performance was also investigated. The tensile strength and tensile modulus of the reinforced composites were significantly improved with the addition of coupling agent. The use of 10 wt.% of coconut fibres in the presence of coupling agent promote an increase on maximum tensile strength of around 41 % comparing with the HDPE/cork (50-50 wt.%) composites. Scanning electron microscopy (SEM) micrographs of the tensile fractured specimens confirmed that the use of coupling agent promoted the interfacial adhesion between the fibres and the thermoplastic matrix. Since, like cork powder, coconut fibres have good thermal and acoustic properties, we consider that the novel reinforced CPC herein described have high potential to be used in building and construction systems and other structural 3D applications.Corticeira Amorim S.G.P.S. (Portugal)Fundação para a Ciência e a Tecnologia (FCT)Project ”NovelComp”QREN FCOMP-01-0202 FEDER-003107Trans Tech PublicationsUniversidade do MinhoFernandes, E. M.Correlo, V. M.Mano, J. F.Reis, R. L.20132013-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/22776eng1662-975210.4028/www.scientific.net/MSF.730-732.373http://www.scientific.net/MSF.730-732.373info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T04:15:10Zoai:repositorium.sdum.uminho.pt:1822/22776Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:43:28.803671Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Natural fibres as reinforcement strategy on cork-polymer composites |
| title |
Natural fibres as reinforcement strategy on cork-polymer composites |
| spellingShingle |
Natural fibres as reinforcement strategy on cork-polymer composites Fernandes, E. M. Cork Cork composites Natural fibres Mechanical properties Morphology Reinforcement Science & Technology |
| title_short |
Natural fibres as reinforcement strategy on cork-polymer composites |
| title_full |
Natural fibres as reinforcement strategy on cork-polymer composites |
| title_fullStr |
Natural fibres as reinforcement strategy on cork-polymer composites |
| title_full_unstemmed |
Natural fibres as reinforcement strategy on cork-polymer composites |
| title_sort |
Natural fibres as reinforcement strategy on cork-polymer composites |
| author |
Fernandes, E. M. |
| author_facet |
Fernandes, E. M. Correlo, V. M. Mano, J. F. Reis, R. L. |
| author_role |
author |
| author2 |
Correlo, V. M. Mano, J. F. Reis, R. L. |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Fernandes, E. M. Correlo, V. M. Mano, J. F. Reis, R. L. |
| dc.subject.por.fl_str_mv |
Cork Cork composites Natural fibres Mechanical properties Morphology Reinforcement Science & Technology |
| topic |
Cork Cork composites Natural fibres Mechanical properties Morphology Reinforcement Science & Technology |
| description |
Cork powder, the most important sub-product of cork processing, combined with thermoplastic matrixes like, high density polyethylene (HDPE), offer a new class of cork-polymer composite (CPC) materials with high added-value. Therefore, reinforcing strategies must be considered to increase the mechanical performance, especially when high content of cork powder is added to the formulation. Coconut fibres have several advantages, such as, low density, renewable source, low cost and biodegradability. The use of these fibres on the reinforcement of CPC materials will not only contribute to improve the mechanical performance but also for increasing the amount of natural component present on the final composition. The main goal of this work was to prepare HDPE/cork (50-50 wt.%) composites reinforced with discontinuous coconut fibres (5 and 10 wt.%) with and without the addition of coupling agent (2 wt.%) by extrusion. The developed reinforced cork based composites were characterized regarding its morphology and mechanical performance. Optical micrographs have shown a homogeneous distribution of the fibres. The coupling agent effect on CPC performance was also investigated. The tensile strength and tensile modulus of the reinforced composites were significantly improved with the addition of coupling agent. The use of 10 wt.% of coconut fibres in the presence of coupling agent promote an increase on maximum tensile strength of around 41 % comparing with the HDPE/cork (50-50 wt.%) composites. Scanning electron microscopy (SEM) micrographs of the tensile fractured specimens confirmed that the use of coupling agent promoted the interfacial adhesion between the fibres and the thermoplastic matrix. Since, like cork powder, coconut fibres have good thermal and acoustic properties, we consider that the novel reinforced CPC herein described have high potential to be used in building and construction systems and other structural 3D applications. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference paper |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/22776 |
| url |
http://hdl.handle.net/1822/22776 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
1662-9752 10.4028/www.scientific.net/MSF.730-732.373 http://www.scientific.net/MSF.730-732.373 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Trans Tech Publications |
| publisher.none.fl_str_mv |
Trans Tech Publications |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833594843265236992 |