Double-Proton-Transfer Processes in Dithiooxamide:  UV-Induced Dithione → Dithiol Reaction and Ground-State Dithiol → Dithione Tunneling

Detalhes bibliográficos
Autor(a) principal: Lapinski, Leszek
Data de Publicação: 2004
Outros Autores: Rostkowska, Hanna, Khvorostov, Artem, Yaman, Müjgan, Fausto, Rui, Nowak, Maciej J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: https://hdl.handle.net/10316/17880
https://doi.org/10.1021/jp049263w
Resumo: Dithiooxamide [rubeanic acid, NH2C(S)C(S)NH2)] monomers were studied by FTIR spectroscopy combined with the low-temperature matrix-isolation technique. The most stable dithione−diamino tautomer of the compound was exclusively observed in argon matrixes immediately after deposition. Upon UV (λ > 345 nm) irradiation the dithione−diamino form transformed, by a double-proton transfer, into the dithiol−diimino tautomer. Theoretically supported analysis of the infrared spectrum emerging upon UV irradiation allowed identification of one of the conformers of the dithiol−diimino tautomer as the dominating photoproduct. Smaller quantities of other conformers of the dithiol−diimino tautomer were also found to be photogenerated. For the UV-irradiated matrix kept subsequently at 10 K and in darkness, a dithiol−diimino → dithione−diamino tautomerization leading to partial recovery of the initial form of the compound was observed. The only possible mechanism of this ground-state transformation at cryogenic temperature is synchronous double-proton tunneling. The experimentally obtained time constant of this process was 18 h.
id RCAP_e810ae6322a24bf3e6bcdcb86c11c8da
oai_identifier_str oai:estudogeral.uc.pt:10316/17880
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Double-Proton-Transfer Processes in Dithiooxamide:  UV-Induced Dithione → Dithiol Reaction and Ground-State Dithiol → Dithione TunnelingDithiooxamide [rubeanic acid, NH2C(S)C(S)NH2)] monomers were studied by FTIR spectroscopy combined with the low-temperature matrix-isolation technique. The most stable dithione−diamino tautomer of the compound was exclusively observed in argon matrixes immediately after deposition. Upon UV (λ > 345 nm) irradiation the dithione−diamino form transformed, by a double-proton transfer, into the dithiol−diimino tautomer. Theoretically supported analysis of the infrared spectrum emerging upon UV irradiation allowed identification of one of the conformers of the dithiol−diimino tautomer as the dominating photoproduct. Smaller quantities of other conformers of the dithiol−diimino tautomer were also found to be photogenerated. For the UV-irradiated matrix kept subsequently at 10 K and in darkness, a dithiol−diimino → dithione−diamino tautomerization leading to partial recovery of the initial form of the compound was observed. The only possible mechanism of this ground-state transformation at cryogenic temperature is synchronous double-proton tunneling. The experimentally obtained time constant of this process was 18 h.American Chemical Society2004-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/17880https://hdl.handle.net/10316/17880https://doi.org/10.1021/jp049263wengLapinski, LeszekRostkowska, HannaKhvorostov, ArtemYaman, MüjganFausto, RuiNowak, Maciej J.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2020-02-11T18:17:41Zoai:estudogeral.uc.pt:10316/17880Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:24:22.607759Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Double-Proton-Transfer Processes in Dithiooxamide:  UV-Induced Dithione → Dithiol Reaction and Ground-State Dithiol → Dithione Tunneling
title Double-Proton-Transfer Processes in Dithiooxamide:  UV-Induced Dithione → Dithiol Reaction and Ground-State Dithiol → Dithione Tunneling
spellingShingle Double-Proton-Transfer Processes in Dithiooxamide:  UV-Induced Dithione → Dithiol Reaction and Ground-State Dithiol → Dithione Tunneling
Lapinski, Leszek
title_short Double-Proton-Transfer Processes in Dithiooxamide:  UV-Induced Dithione → Dithiol Reaction and Ground-State Dithiol → Dithione Tunneling
title_full Double-Proton-Transfer Processes in Dithiooxamide:  UV-Induced Dithione → Dithiol Reaction and Ground-State Dithiol → Dithione Tunneling
title_fullStr Double-Proton-Transfer Processes in Dithiooxamide:  UV-Induced Dithione → Dithiol Reaction and Ground-State Dithiol → Dithione Tunneling
title_full_unstemmed Double-Proton-Transfer Processes in Dithiooxamide:  UV-Induced Dithione → Dithiol Reaction and Ground-State Dithiol → Dithione Tunneling
title_sort Double-Proton-Transfer Processes in Dithiooxamide:  UV-Induced Dithione → Dithiol Reaction and Ground-State Dithiol → Dithione Tunneling
author Lapinski, Leszek
author_facet Lapinski, Leszek
Rostkowska, Hanna
Khvorostov, Artem
Yaman, Müjgan
Fausto, Rui
Nowak, Maciej J.
author_role author
author2 Rostkowska, Hanna
Khvorostov, Artem
Yaman, Müjgan
Fausto, Rui
Nowak, Maciej J.
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Lapinski, Leszek
Rostkowska, Hanna
Khvorostov, Artem
Yaman, Müjgan
Fausto, Rui
Nowak, Maciej J.
description Dithiooxamide [rubeanic acid, NH2C(S)C(S)NH2)] monomers were studied by FTIR spectroscopy combined with the low-temperature matrix-isolation technique. The most stable dithione−diamino tautomer of the compound was exclusively observed in argon matrixes immediately after deposition. Upon UV (λ > 345 nm) irradiation the dithione−diamino form transformed, by a double-proton transfer, into the dithiol−diimino tautomer. Theoretically supported analysis of the infrared spectrum emerging upon UV irradiation allowed identification of one of the conformers of the dithiol−diimino tautomer as the dominating photoproduct. Smaller quantities of other conformers of the dithiol−diimino tautomer were also found to be photogenerated. For the UV-irradiated matrix kept subsequently at 10 K and in darkness, a dithiol−diimino → dithione−diamino tautomerization leading to partial recovery of the initial form of the compound was observed. The only possible mechanism of this ground-state transformation at cryogenic temperature is synchronous double-proton tunneling. The experimentally obtained time constant of this process was 18 h.
publishDate 2004
dc.date.none.fl_str_mv 2004-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/17880
https://hdl.handle.net/10316/17880
https://doi.org/10.1021/jp049263w
url https://hdl.handle.net/10316/17880
https://doi.org/10.1021/jp049263w
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602344491679744