Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic Grafts

Bibliographic Details
Main Author: Vigia, E
Publication Date: 2022
Other Authors: Ramalhete, L, Barros, I, Chumbinho, B, Filipe, E, Pena, A, Bicho, L, Nobre, A, Carrelha, S, Corado, S, Sobral, M, Lamelas, J, Santos Coelho, J, Pinto Marques, H, Pico, P, Costa, S, Rodrigues, F, Bigotte Vieira, M, Magriço, R, Cotovio, P, Caeiro, F, Aires, I, Silva, C, Remédio, F, Martins, A, Ferreira, A, Paulino, J, Nolasco, F, Ribeiro, R
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.17/4632
Summary: The impact of delayed graft function on outcomes following various solid organ transplants is well documented and addressed in the literature. Delayed graft function following various solid organ transplants is associated with both short- and long-term graft survival issues. In a retrospective cohort study including 106 patients we evaluated whether pancreas graft survival differs according to moment of insulin therapy following simultaneous pancreaskidney transplant. As a result, we aimed to identify possible risk factors and build a machine-learning-based model that predicts the likelihood of dysfunction following SPK transplant patients based on day zero data after transplant, allowing to enhance pancreatic graft survival. Feature selection by Relief algorithm yielded donor features, age, cause of death, hemoglobin, gender, ventilation days, days in ICU, length of cardiac respiratory arrest and recipient features, gender, long-term insulin, dialysis type, time of diabetes mellitus, vPRA pre-Tx, number of HLA-A mismatches and PRDI, all contributed to the models' strength.
id RCAP_e7b5e1dc0cc5dc33182a6c3924d78a6b
oai_identifier_str oai:repositorio.chlc.pt:10400.17/4632
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic GraftsPancreas TransplantationGraft RejectionGraft SurvivalHCC CHBPTThe impact of delayed graft function on outcomes following various solid organ transplants is well documented and addressed in the literature. Delayed graft function following various solid organ transplants is associated with both short- and long-term graft survival issues. In a retrospective cohort study including 106 patients we evaluated whether pancreas graft survival differs according to moment of insulin therapy following simultaneous pancreaskidney transplant. As a result, we aimed to identify possible risk factors and build a machine-learning-based model that predicts the likelihood of dysfunction following SPK transplant patients based on day zero data after transplant, allowing to enhance pancreatic graft survival. Feature selection by Relief algorithm yielded donor features, age, cause of death, hemoglobin, gender, ventilation days, days in ICU, length of cardiac respiratory arrest and recipient features, gender, long-term insulin, dialysis type, time of diabetes mellitus, vPRA pre-Tx, number of HLA-A mismatches and PRDI, all contributed to the models' strength.Longdom Publishing SLRepositório da Unidade Local de Saúde São JoséVigia, ERamalhete, LBarros, IChumbinho, BFilipe, EPena, ABicho, LNobre, ACarrelha, SCorado, SSobral, MLamelas, JSantos Coelho, JPinto Marques, HPico, PCosta, SRodrigues, FBigotte Vieira, MMagriço, RCotovio, PCaeiro, FAires, ISilva, CRemédio, FMartins, AFerreira, APaulino, JNolasco, FRibeiro, R2023-08-10T11:36:48Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.17/4632enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-06T16:50:57Zoai:repositorio.chlc.pt:10400.17/4632Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:21:40.788808Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic Grafts
title Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic Grafts
spellingShingle Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic Grafts
Vigia, E
Pancreas Transplantation
Graft Rejection
Graft Survival
HCC CHBPT
title_short Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic Grafts
title_full Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic Grafts
title_fullStr Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic Grafts
title_full_unstemmed Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic Grafts
title_sort Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic Grafts
author Vigia, E
author_facet Vigia, E
Ramalhete, L
Barros, I
Chumbinho, B
Filipe, E
Pena, A
Bicho, L
Nobre, A
Carrelha, S
Corado, S
Sobral, M
Lamelas, J
Santos Coelho, J
Pinto Marques, H
Pico, P
Costa, S
Rodrigues, F
Bigotte Vieira, M
Magriço, R
Cotovio, P
Caeiro, F
Aires, I
Silva, C
Remédio, F
Martins, A
Ferreira, A
Paulino, J
Nolasco, F
Ribeiro, R
author_role author
author2 Ramalhete, L
Barros, I
Chumbinho, B
Filipe, E
Pena, A
Bicho, L
Nobre, A
Carrelha, S
Corado, S
Sobral, M
Lamelas, J
Santos Coelho, J
Pinto Marques, H
Pico, P
Costa, S
Rodrigues, F
Bigotte Vieira, M
Magriço, R
Cotovio, P
Caeiro, F
Aires, I
Silva, C
Remédio, F
Martins, A
Ferreira, A
Paulino, J
Nolasco, F
Ribeiro, R
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório da Unidade Local de Saúde São José
dc.contributor.author.fl_str_mv Vigia, E
Ramalhete, L
Barros, I
Chumbinho, B
Filipe, E
Pena, A
Bicho, L
Nobre, A
Carrelha, S
Corado, S
Sobral, M
Lamelas, J
Santos Coelho, J
Pinto Marques, H
Pico, P
Costa, S
Rodrigues, F
Bigotte Vieira, M
Magriço, R
Cotovio, P
Caeiro, F
Aires, I
Silva, C
Remédio, F
Martins, A
Ferreira, A
Paulino, J
Nolasco, F
Ribeiro, R
dc.subject.por.fl_str_mv Pancreas Transplantation
Graft Rejection
Graft Survival
HCC CHBPT
topic Pancreas Transplantation
Graft Rejection
Graft Survival
HCC CHBPT
description The impact of delayed graft function on outcomes following various solid organ transplants is well documented and addressed in the literature. Delayed graft function following various solid organ transplants is associated with both short- and long-term graft survival issues. In a retrospective cohort study including 106 patients we evaluated whether pancreas graft survival differs according to moment of insulin therapy following simultaneous pancreaskidney transplant. As a result, we aimed to identify possible risk factors and build a machine-learning-based model that predicts the likelihood of dysfunction following SPK transplant patients based on day zero data after transplant, allowing to enhance pancreatic graft survival. Feature selection by Relief algorithm yielded donor features, age, cause of death, hemoglobin, gender, ventilation days, days in ICU, length of cardiac respiratory arrest and recipient features, gender, long-term insulin, dialysis type, time of diabetes mellitus, vPRA pre-Tx, number of HLA-A mismatches and PRDI, all contributed to the models' strength.
publishDate 2022
dc.date.none.fl_str_mv 2022
2022-01-01T00:00:00Z
2023-08-10T11:36:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.17/4632
url http://hdl.handle.net/10400.17/4632
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Longdom Publishing SL
publisher.none.fl_str_mv Longdom Publishing SL
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600503409278976