Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic Grafts
Main Author: | |
---|---|
Publication Date: | 2022 |
Other Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.17/4632 |
Summary: | The impact of delayed graft function on outcomes following various solid organ transplants is well documented and addressed in the literature. Delayed graft function following various solid organ transplants is associated with both short- and long-term graft survival issues. In a retrospective cohort study including 106 patients we evaluated whether pancreas graft survival differs according to moment of insulin therapy following simultaneous pancreaskidney transplant. As a result, we aimed to identify possible risk factors and build a machine-learning-based model that predicts the likelihood of dysfunction following SPK transplant patients based on day zero data after transplant, allowing to enhance pancreatic graft survival. Feature selection by Relief algorithm yielded donor features, age, cause of death, hemoglobin, gender, ventilation days, days in ICU, length of cardiac respiratory arrest and recipient features, gender, long-term insulin, dialysis type, time of diabetes mellitus, vPRA pre-Tx, number of HLA-A mismatches and PRDI, all contributed to the models' strength. |
id |
RCAP_e7b5e1dc0cc5dc33182a6c3924d78a6b |
---|---|
oai_identifier_str |
oai:repositorio.chlc.pt:10400.17/4632 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic GraftsPancreas TransplantationGraft RejectionGraft SurvivalHCC CHBPTThe impact of delayed graft function on outcomes following various solid organ transplants is well documented and addressed in the literature. Delayed graft function following various solid organ transplants is associated with both short- and long-term graft survival issues. In a retrospective cohort study including 106 patients we evaluated whether pancreas graft survival differs according to moment of insulin therapy following simultaneous pancreaskidney transplant. As a result, we aimed to identify possible risk factors and build a machine-learning-based model that predicts the likelihood of dysfunction following SPK transplant patients based on day zero data after transplant, allowing to enhance pancreatic graft survival. Feature selection by Relief algorithm yielded donor features, age, cause of death, hemoglobin, gender, ventilation days, days in ICU, length of cardiac respiratory arrest and recipient features, gender, long-term insulin, dialysis type, time of diabetes mellitus, vPRA pre-Tx, number of HLA-A mismatches and PRDI, all contributed to the models' strength.Longdom Publishing SLRepositório da Unidade Local de Saúde São JoséVigia, ERamalhete, LBarros, IChumbinho, BFilipe, EPena, ABicho, LNobre, ACarrelha, SCorado, SSobral, MLamelas, JSantos Coelho, JPinto Marques, HPico, PCosta, SRodrigues, FBigotte Vieira, MMagriço, RCotovio, PCaeiro, FAires, ISilva, CRemédio, FMartins, AFerreira, APaulino, JNolasco, FRibeiro, R2023-08-10T11:36:48Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.17/4632enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-06T16:50:57Zoai:repositorio.chlc.pt:10400.17/4632Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:21:40.788808Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic Grafts |
title |
Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic Grafts |
spellingShingle |
Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic Grafts Vigia, E Pancreas Transplantation Graft Rejection Graft Survival HCC CHBPT |
title_short |
Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic Grafts |
title_full |
Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic Grafts |
title_fullStr |
Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic Grafts |
title_full_unstemmed |
Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic Grafts |
title_sort |
Predicting Function Delay with a Machine Learning Model: Improve the Long-term Survival of Pancreatic Grafts |
author |
Vigia, E |
author_facet |
Vigia, E Ramalhete, L Barros, I Chumbinho, B Filipe, E Pena, A Bicho, L Nobre, A Carrelha, S Corado, S Sobral, M Lamelas, J Santos Coelho, J Pinto Marques, H Pico, P Costa, S Rodrigues, F Bigotte Vieira, M Magriço, R Cotovio, P Caeiro, F Aires, I Silva, C Remédio, F Martins, A Ferreira, A Paulino, J Nolasco, F Ribeiro, R |
author_role |
author |
author2 |
Ramalhete, L Barros, I Chumbinho, B Filipe, E Pena, A Bicho, L Nobre, A Carrelha, S Corado, S Sobral, M Lamelas, J Santos Coelho, J Pinto Marques, H Pico, P Costa, S Rodrigues, F Bigotte Vieira, M Magriço, R Cotovio, P Caeiro, F Aires, I Silva, C Remédio, F Martins, A Ferreira, A Paulino, J Nolasco, F Ribeiro, R |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Repositório da Unidade Local de Saúde São José |
dc.contributor.author.fl_str_mv |
Vigia, E Ramalhete, L Barros, I Chumbinho, B Filipe, E Pena, A Bicho, L Nobre, A Carrelha, S Corado, S Sobral, M Lamelas, J Santos Coelho, J Pinto Marques, H Pico, P Costa, S Rodrigues, F Bigotte Vieira, M Magriço, R Cotovio, P Caeiro, F Aires, I Silva, C Remédio, F Martins, A Ferreira, A Paulino, J Nolasco, F Ribeiro, R |
dc.subject.por.fl_str_mv |
Pancreas Transplantation Graft Rejection Graft Survival HCC CHBPT |
topic |
Pancreas Transplantation Graft Rejection Graft Survival HCC CHBPT |
description |
The impact of delayed graft function on outcomes following various solid organ transplants is well documented and addressed in the literature. Delayed graft function following various solid organ transplants is associated with both short- and long-term graft survival issues. In a retrospective cohort study including 106 patients we evaluated whether pancreas graft survival differs according to moment of insulin therapy following simultaneous pancreaskidney transplant. As a result, we aimed to identify possible risk factors and build a machine-learning-based model that predicts the likelihood of dysfunction following SPK transplant patients based on day zero data after transplant, allowing to enhance pancreatic graft survival. Feature selection by Relief algorithm yielded donor features, age, cause of death, hemoglobin, gender, ventilation days, days in ICU, length of cardiac respiratory arrest and recipient features, gender, long-term insulin, dialysis type, time of diabetes mellitus, vPRA pre-Tx, number of HLA-A mismatches and PRDI, all contributed to the models' strength. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2022-01-01T00:00:00Z 2023-08-10T11:36:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.17/4632 |
url |
http://hdl.handle.net/10400.17/4632 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Longdom Publishing SL |
publisher.none.fl_str_mv |
Longdom Publishing SL |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833600503409278976 |