Bioengineering a humanized 3D tri-culture osteosarcoma model to assess tumor invasiveness and therapy response

Bibliographic Details
Main Author: Monteiro, Cátia F.
Publication Date: 2021
Other Authors: Custódio, Catarina A, Mano, João F.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/36876
Summary: To date, anticancer therapies with evidenced efficacy in preclinical models fail during clinical trials. The shortage of robust drug screening platforms that accurately predict patient's response underlie these misleading results. To provide a reliable platform for tumor drug discovery, we herein propose a relevant humanized 3D osteosarcoma (OS) model exploring the potential of methacryloyl platelet lysates (PLMA)-based hydrogels to sustain spheroid growth and invasion. The architecture and synergistic cell-microenvironment interaction of an invading tumor was recapitulated encapsulating spheroids in PLMA hydrogels, alone or co-cultured with osteoblasts and mesenchymal stem cells. The stem cells alignment toward OS spheroid suggested that tumor cells chemotactically attracted the surrounding stromal cells, which supported tumor growth and invasion into the hydrogels. The exposure of established models to doxorubicin revealed an improved drug resistance of PLMA-based models, comparing with scaffold-free spheroids. The proposed OS models highlighted the feasibility of PLMA hydrogels to support tumor invasion and recapitulate tumor-stromal cell crosstalk, demonstrating the potential of this 3D platform for complex tumor modelling. STATEMENT OF SIGNIFICANCE: Cell invasion mechanisms involved in tumor progression have been recapitulated in the field of 3D in vitro modeling, leveraging the great advance in biomimetic materials. In line with the growing interest in human-derived biomaterials, the aim of this study is to explore for the first time the potential of methacryloyl platelet lysates (PLMA)-based hydrogels to develop a humanized 3D osteosarcoma model to assess tumor invasiveness and drug sensitivity. By co-culturing tumor spheroids with human osteoblasts and human mesenchymal stem cells, this study demonstrated the importance of the synergistic tumor cell-microenvironment interaction in tumor growth, invasion and drug resistance. The established 3D osteosarcoma model highlighted the feasibility of PLMA hydrogels as a relevant 3D platform for complex tumor modelling.
id RCAP_e747cb28fcc4fa81a28560d4f26e3305
oai_identifier_str oai:ria.ua.pt:10773/36876
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Bioengineering a humanized 3D tri-culture osteosarcoma model to assess tumor invasiveness and therapy response3D in vitro tumor modelOsteosarcomaHuman platelet lysatesCo-cultureDrug screeningTo date, anticancer therapies with evidenced efficacy in preclinical models fail during clinical trials. The shortage of robust drug screening platforms that accurately predict patient's response underlie these misleading results. To provide a reliable platform for tumor drug discovery, we herein propose a relevant humanized 3D osteosarcoma (OS) model exploring the potential of methacryloyl platelet lysates (PLMA)-based hydrogels to sustain spheroid growth and invasion. The architecture and synergistic cell-microenvironment interaction of an invading tumor was recapitulated encapsulating spheroids in PLMA hydrogels, alone or co-cultured with osteoblasts and mesenchymal stem cells. The stem cells alignment toward OS spheroid suggested that tumor cells chemotactically attracted the surrounding stromal cells, which supported tumor growth and invasion into the hydrogels. The exposure of established models to doxorubicin revealed an improved drug resistance of PLMA-based models, comparing with scaffold-free spheroids. The proposed OS models highlighted the feasibility of PLMA hydrogels to support tumor invasion and recapitulate tumor-stromal cell crosstalk, demonstrating the potential of this 3D platform for complex tumor modelling. STATEMENT OF SIGNIFICANCE: Cell invasion mechanisms involved in tumor progression have been recapitulated in the field of 3D in vitro modeling, leveraging the great advance in biomimetic materials. In line with the growing interest in human-derived biomaterials, the aim of this study is to explore for the first time the potential of methacryloyl platelet lysates (PLMA)-based hydrogels to develop a humanized 3D osteosarcoma model to assess tumor invasiveness and drug sensitivity. By co-culturing tumor spheroids with human osteoblasts and human mesenchymal stem cells, this study demonstrated the importance of the synergistic tumor cell-microenvironment interaction in tumor growth, invasion and drug resistance. The established 3D osteosarcoma model highlighted the feasibility of PLMA hydrogels as a relevant 3D platform for complex tumor modelling.Elsevier2023-10-15T00:00:00Z2021-10-15T00:00:00Z2021-10-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/36876eng1742-706110.1016/j.actbio.2021.07.034Monteiro, Cátia F.Custódio, Catarina AMano, João F.info:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:44:08Zoai:ria.ua.pt:10773/36876Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:18:18.525840Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Bioengineering a humanized 3D tri-culture osteosarcoma model to assess tumor invasiveness and therapy response
title Bioengineering a humanized 3D tri-culture osteosarcoma model to assess tumor invasiveness and therapy response
spellingShingle Bioengineering a humanized 3D tri-culture osteosarcoma model to assess tumor invasiveness and therapy response
Monteiro, Cátia F.
3D in vitro tumor model
Osteosarcoma
Human platelet lysates
Co-culture
Drug screening
title_short Bioengineering a humanized 3D tri-culture osteosarcoma model to assess tumor invasiveness and therapy response
title_full Bioengineering a humanized 3D tri-culture osteosarcoma model to assess tumor invasiveness and therapy response
title_fullStr Bioengineering a humanized 3D tri-culture osteosarcoma model to assess tumor invasiveness and therapy response
title_full_unstemmed Bioengineering a humanized 3D tri-culture osteosarcoma model to assess tumor invasiveness and therapy response
title_sort Bioengineering a humanized 3D tri-culture osteosarcoma model to assess tumor invasiveness and therapy response
author Monteiro, Cátia F.
author_facet Monteiro, Cátia F.
Custódio, Catarina A
Mano, João F.
author_role author
author2 Custódio, Catarina A
Mano, João F.
author2_role author
author
dc.contributor.author.fl_str_mv Monteiro, Cátia F.
Custódio, Catarina A
Mano, João F.
dc.subject.por.fl_str_mv 3D in vitro tumor model
Osteosarcoma
Human platelet lysates
Co-culture
Drug screening
topic 3D in vitro tumor model
Osteosarcoma
Human platelet lysates
Co-culture
Drug screening
description To date, anticancer therapies with evidenced efficacy in preclinical models fail during clinical trials. The shortage of robust drug screening platforms that accurately predict patient's response underlie these misleading results. To provide a reliable platform for tumor drug discovery, we herein propose a relevant humanized 3D osteosarcoma (OS) model exploring the potential of methacryloyl platelet lysates (PLMA)-based hydrogels to sustain spheroid growth and invasion. The architecture and synergistic cell-microenvironment interaction of an invading tumor was recapitulated encapsulating spheroids in PLMA hydrogels, alone or co-cultured with osteoblasts and mesenchymal stem cells. The stem cells alignment toward OS spheroid suggested that tumor cells chemotactically attracted the surrounding stromal cells, which supported tumor growth and invasion into the hydrogels. The exposure of established models to doxorubicin revealed an improved drug resistance of PLMA-based models, comparing with scaffold-free spheroids. The proposed OS models highlighted the feasibility of PLMA hydrogels to support tumor invasion and recapitulate tumor-stromal cell crosstalk, demonstrating the potential of this 3D platform for complex tumor modelling. STATEMENT OF SIGNIFICANCE: Cell invasion mechanisms involved in tumor progression have been recapitulated in the field of 3D in vitro modeling, leveraging the great advance in biomimetic materials. In line with the growing interest in human-derived biomaterials, the aim of this study is to explore for the first time the potential of methacryloyl platelet lysates (PLMA)-based hydrogels to develop a humanized 3D osteosarcoma model to assess tumor invasiveness and drug sensitivity. By co-culturing tumor spheroids with human osteoblasts and human mesenchymal stem cells, this study demonstrated the importance of the synergistic tumor cell-microenvironment interaction in tumor growth, invasion and drug resistance. The established 3D osteosarcoma model highlighted the feasibility of PLMA hydrogels as a relevant 3D platform for complex tumor modelling.
publishDate 2021
dc.date.none.fl_str_mv 2021-10-15T00:00:00Z
2021-10-15
2023-10-15T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/36876
url http://hdl.handle.net/10773/36876
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1742-7061
10.1016/j.actbio.2021.07.034
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594484784365568