Export Ready — 

Osteosarcoma-on-a-chip: a physiologically relevant human-based microfluidic platform for drug screening

Bibliographic Details
Main Author: Monteiro, Cátia Filipa Rodrigues
Publication Date: 2024
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/41882
Summary: The lack of predictability of the current pre-clinical models is a major concern in cancer research. Neglecting the tridimensionality of native tissues and the importance of the mechanical stimuli provided by fluid flow inside the human body hamper the faithful recapitulation of several physiopathological mechanisms involved in tissue homeostasis and cancer. The present thesis proposes the development of humanized 3D static and dynamic osteosarcoma (OS) tumor models by exploring the feasibility of human methacryloyl platelet lysate (PLMA) biomaterial to support the study of distinct stages of tumor progression. The main goals of the developed 3D models were: (i) validate PLMA hydrogels for tumor invasion; (ii) study the influence of stromal cells in tumor invasive behavior; (iii) develop a new strategy for generating 3D spheroid-like cell-rich assemblies; and (iv) engineer a microfluidic tumor-on-a-chip model to assess the metastatic tumor inter-heterogeneity. The potential of human-derived PLMA hydrogels to support mesenchymal stem cell and tumor cell spheroid growth and invasion was validated, granting a new 3D platform for the development of more complex tumor models. The co-culture of stromal cells, namely mesenchymal stem cells and osteoblasts, in the tumor spheroid surroundings, enabled a faithful mimicry of the synergistic tumor-stromal cell paracrine signaling crucial for enhanced tumor invasion and stromal cell migration toward the tumor. The tri-culture model also successfully recreated the protective role exerted by stromal cells in tumor resistance against anti-cancer therapies. In an immunomodulatory 3D OS model, the pro-tumoral molecular environment generated by the PLMA-embedded tumor stimulated an anti-inflammatory macrophage phenotype that, in turn, enhanced tumor proliferation and invasiveness. Aiming to propose a new method of generating biomaterial-incorporating cell aggregates, PLMA-based nanofibrils were fabricated and assembled into a supramolecular ultrathin and flexible membrane, which was folded by cells into a 3D PLMA-cell microtissue. Recognizing the pivotal role of fluid flow-induced mechanical stimuli in regulating tumor progression and metastasis, a human tumor-on-a-chip co-culture OS model was microengineered to emulate the distinct metastatic ability inherent to tumors of similar origin tissue. The biologically-relevant cell-cell and cell-matrix interaction prompted an accurate recreation of the metastatic tumor inter-heterogeneity and respective biomarker profile, while emphasizing the importance of fluid dynamics. Overall, these studies highlight the PLMA as a promising human-derived biomaterial to pursue mechanistic studies on early tumor metastatic events, paving the way toward the next generation of humanized organ-on-a-chip devices.
id RCAP_b0332c29e1b923d74b7cd7f7d23edbdb
oai_identifier_str oai:ria.ua.pt:10773/41882
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Osteosarcoma-on-a-chip: a physiologically relevant human-based microfluidic platform for drug screeningHuman platelet lysateHydrogelsOsteosarcoma3D tumor modelsCell spheroidsTumor invasionMetastasisThe lack of predictability of the current pre-clinical models is a major concern in cancer research. Neglecting the tridimensionality of native tissues and the importance of the mechanical stimuli provided by fluid flow inside the human body hamper the faithful recapitulation of several physiopathological mechanisms involved in tissue homeostasis and cancer. The present thesis proposes the development of humanized 3D static and dynamic osteosarcoma (OS) tumor models by exploring the feasibility of human methacryloyl platelet lysate (PLMA) biomaterial to support the study of distinct stages of tumor progression. The main goals of the developed 3D models were: (i) validate PLMA hydrogels for tumor invasion; (ii) study the influence of stromal cells in tumor invasive behavior; (iii) develop a new strategy for generating 3D spheroid-like cell-rich assemblies; and (iv) engineer a microfluidic tumor-on-a-chip model to assess the metastatic tumor inter-heterogeneity. The potential of human-derived PLMA hydrogels to support mesenchymal stem cell and tumor cell spheroid growth and invasion was validated, granting a new 3D platform for the development of more complex tumor models. The co-culture of stromal cells, namely mesenchymal stem cells and osteoblasts, in the tumor spheroid surroundings, enabled a faithful mimicry of the synergistic tumor-stromal cell paracrine signaling crucial for enhanced tumor invasion and stromal cell migration toward the tumor. The tri-culture model also successfully recreated the protective role exerted by stromal cells in tumor resistance against anti-cancer therapies. In an immunomodulatory 3D OS model, the pro-tumoral molecular environment generated by the PLMA-embedded tumor stimulated an anti-inflammatory macrophage phenotype that, in turn, enhanced tumor proliferation and invasiveness. Aiming to propose a new method of generating biomaterial-incorporating cell aggregates, PLMA-based nanofibrils were fabricated and assembled into a supramolecular ultrathin and flexible membrane, which was folded by cells into a 3D PLMA-cell microtissue. Recognizing the pivotal role of fluid flow-induced mechanical stimuli in regulating tumor progression and metastasis, a human tumor-on-a-chip co-culture OS model was microengineered to emulate the distinct metastatic ability inherent to tumors of similar origin tissue. The biologically-relevant cell-cell and cell-matrix interaction prompted an accurate recreation of the metastatic tumor inter-heterogeneity and respective biomarker profile, while emphasizing the importance of fluid dynamics. Overall, these studies highlight the PLMA as a promising human-derived biomaterial to pursue mechanistic studies on early tumor metastatic events, paving the way toward the next generation of humanized organ-on-a-chip devices.A falta de previsibilidade dos modelos pré-clínicos atuais é a maior preocupação na investigação do cancro. Negligenciar a tridimensionalidade dos tecidos nativos e a importância dos estímulos mecânicos providenciados pelo fluxo de fluidos dentro do corpo humano compromete a recapitulação fiel dos diversos mecanismos fisiopatológicos envolvidos na homeostase dos tecidos e no cancro. A presente tese propõe o desenvolvimento de modelos tumorais 3D de osteossarcoma (OS) humanizados, estáticos e dinâmicos, explorando a viabilidade do biomaterial de origem humana baseado em lisado de plaquetas metacrilado (PLMA) para o estudo de fases distintas da progressão do tumor. Os principais objetivos dos modelos 3D desenvolvidos foram: (i) validar os hidrogéis de PLMA para invasão tumoral; (ii) estudar a influência das células estromais no comportamento invasivo do tumor; (iii) desenvolver uma nova estratégia para gerar agregados celulares 3D semelhantes a esferóides; e (iv) fabricar um modelo de microfluídica de tumor-em-um-chip para avaliar a inter-heterogeneidade metastática tumoral. O potencial dos hidrogéis de PLMA derivados de humanos para suportar o crescimento e invasão de esferóides de células estaminais mesenquimais e de células tumorais foi validada, proporcionando uma nova plataforma 3D para o desenvolvimento de modelos tumorais mais complexos. A co-cultura de células estromais, nomeadamente de células estaminais mesenquimais e de osteoblastos, no meio circundante do esferóide tumoral, permitiu uma mimetização fiel da sinalização parácrina sinérgica entre as células tumorais e estromais, crucial para potenciar a invasão tumoral e a migração das células estromais em direção ao tumor. O modelo de tri-cultura também recriou com sucesso o papel protetor exercido pelas células estromais na resistência do tumor às terapias contra o cancro. Num modelo imunomodulatório de OS em 3D, o ambiente molecular pro-tumoral gerado pelo tumor embebido em PLMA estimulou um fenótipo anti-inflamatório nos macrófagos que, por sua vez, aumentou a proliferação e invasão tumoral. Com o intuito de propor um novo método para gerar agregados celulares incorporando um biomaterial, nanofibrilas baseadas em PLMA foram fabricadas e agregadas em uma membrana supramolecular ultra-fina e flexível, a qual foi dobrada pelas células, resultando num microtecido 3D de PLMA e células. Reconhecendo o papel crucial do estímulo mecânico induzido pelo fluxo de fluidos na regulação da progressão e metástase do tumor, um modelo humano de co-cultura de tumor-em-um-chip para OS foi fabricado para imitar a distinta habilidade metastática inerente aos tumores do mesmo tecido de origem. A interação biológica relevante célula-célula e célula-matriz permitiu uma recriação precisa da inter-heterogeneidade metastática do tumor e do perfil de biomarcadores correspondente, enfatizando a importância da dinâmica de fluidos. No geral, estes estudos destacam o PLMA como um biomaterial de origem humana promissor para a realização de estudos relacionados com os mecanismos envolvidos nos eventos iniciais da metástase do tumor, abrindo caminho para a próxima geração de dispositivos humanizados de órgão-em-um-chip.2026-04-30T00:00:00Z2024-04-26T00:00:00Z2024-04-26doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/41882engMonteiro, Cátia Filipa Rodriguesinfo:eu-repo/semantics/embargoedAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-27T01:46:32Zoai:ria.ua.pt:10773/41882Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:52:32.919033Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Osteosarcoma-on-a-chip: a physiologically relevant human-based microfluidic platform for drug screening
title Osteosarcoma-on-a-chip: a physiologically relevant human-based microfluidic platform for drug screening
spellingShingle Osteosarcoma-on-a-chip: a physiologically relevant human-based microfluidic platform for drug screening
Monteiro, Cátia Filipa Rodrigues
Human platelet lysate
Hydrogels
Osteosarcoma
3D tumor models
Cell spheroids
Tumor invasion
Metastasis
title_short Osteosarcoma-on-a-chip: a physiologically relevant human-based microfluidic platform for drug screening
title_full Osteosarcoma-on-a-chip: a physiologically relevant human-based microfluidic platform for drug screening
title_fullStr Osteosarcoma-on-a-chip: a physiologically relevant human-based microfluidic platform for drug screening
title_full_unstemmed Osteosarcoma-on-a-chip: a physiologically relevant human-based microfluidic platform for drug screening
title_sort Osteosarcoma-on-a-chip: a physiologically relevant human-based microfluidic platform for drug screening
author Monteiro, Cátia Filipa Rodrigues
author_facet Monteiro, Cátia Filipa Rodrigues
author_role author
dc.contributor.author.fl_str_mv Monteiro, Cátia Filipa Rodrigues
dc.subject.por.fl_str_mv Human platelet lysate
Hydrogels
Osteosarcoma
3D tumor models
Cell spheroids
Tumor invasion
Metastasis
topic Human platelet lysate
Hydrogels
Osteosarcoma
3D tumor models
Cell spheroids
Tumor invasion
Metastasis
description The lack of predictability of the current pre-clinical models is a major concern in cancer research. Neglecting the tridimensionality of native tissues and the importance of the mechanical stimuli provided by fluid flow inside the human body hamper the faithful recapitulation of several physiopathological mechanisms involved in tissue homeostasis and cancer. The present thesis proposes the development of humanized 3D static and dynamic osteosarcoma (OS) tumor models by exploring the feasibility of human methacryloyl platelet lysate (PLMA) biomaterial to support the study of distinct stages of tumor progression. The main goals of the developed 3D models were: (i) validate PLMA hydrogels for tumor invasion; (ii) study the influence of stromal cells in tumor invasive behavior; (iii) develop a new strategy for generating 3D spheroid-like cell-rich assemblies; and (iv) engineer a microfluidic tumor-on-a-chip model to assess the metastatic tumor inter-heterogeneity. The potential of human-derived PLMA hydrogels to support mesenchymal stem cell and tumor cell spheroid growth and invasion was validated, granting a new 3D platform for the development of more complex tumor models. The co-culture of stromal cells, namely mesenchymal stem cells and osteoblasts, in the tumor spheroid surroundings, enabled a faithful mimicry of the synergistic tumor-stromal cell paracrine signaling crucial for enhanced tumor invasion and stromal cell migration toward the tumor. The tri-culture model also successfully recreated the protective role exerted by stromal cells in tumor resistance against anti-cancer therapies. In an immunomodulatory 3D OS model, the pro-tumoral molecular environment generated by the PLMA-embedded tumor stimulated an anti-inflammatory macrophage phenotype that, in turn, enhanced tumor proliferation and invasiveness. Aiming to propose a new method of generating biomaterial-incorporating cell aggregates, PLMA-based nanofibrils were fabricated and assembled into a supramolecular ultrathin and flexible membrane, which was folded by cells into a 3D PLMA-cell microtissue. Recognizing the pivotal role of fluid flow-induced mechanical stimuli in regulating tumor progression and metastasis, a human tumor-on-a-chip co-culture OS model was microengineered to emulate the distinct metastatic ability inherent to tumors of similar origin tissue. The biologically-relevant cell-cell and cell-matrix interaction prompted an accurate recreation of the metastatic tumor inter-heterogeneity and respective biomarker profile, while emphasizing the importance of fluid dynamics. Overall, these studies highlight the PLMA as a promising human-derived biomaterial to pursue mechanistic studies on early tumor metastatic events, paving the way toward the next generation of humanized organ-on-a-chip devices.
publishDate 2024
dc.date.none.fl_str_mv 2024-04-26T00:00:00Z
2024-04-26
2026-04-30T00:00:00Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/41882
url http://hdl.handle.net/10773/41882
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833597029759057920