Modern trends for peripheral nerve repair and regeneration: beyond the hollow nerve guidance conduit

Bibliographic Details
Main Author: Carvalho, Cristiana Rodrigues
Publication Date: 2019
Other Authors: Oliveira, Joaquim M., Reis, R. L.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/62363
Summary: Peripheral nerve repair and regeneration remains among the greatest challenges in tissue engineering 29 and regenerative medicine. Even though peripheral nerve injuries (PNIs) are capable of some degree 30 of regeneration, frail recovery is seen even when the best microsurgical technique is applied. PNIs are 31 known to be very incapacitating for the patient, due to the deprivation of motor and sensory abilities. 32 Since there is no optimal solution for tackling this problem up to this day, the evolution in the field is 33 constant, with innovative designs of advanced nerve guidance conduits (NGCs) being reported every 34 day. As a basic concept, a NGC should act as a physical barrier from the external environment, 35 concomitantly acting as physical guidance for the regenerative axons across the gap lesion. NGCs 36 should also be able to retain the naturally released nerve growth factors secreted by the damaged nerve 37 stumps, as well as reducing the invasion of scar tissue-forming fibroblasts to the injury site. Based on 38 the neurobiological knowledge related to the events that succeed after a nerve injury, neuronal 39 subsistence is subjected to the existence of an ideal environment of growth factors, hormones, 40 cytokines, and extracellular matrix (ECM) factors. Therefore, it is known that multifunctional NGCs 41 fabricated through combinatorial approaches are needed to improve the functional and clinical 42 outcomes after PNIs. The present work overviews the current reports dealing with the several features 43 that can be used to improve peripheral nerve regeneration (PNR), ranging from the simple use of hollow 44 NGCs to tissue engineered intraluminal fillers, or to even more advanced strategies, comprising the 45 molecular and gene therapies as well as cell-based therapies.
id RCAP_e6c6a66a3b6e682fe05348f194f26b5f
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/62363
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Modern trends for peripheral nerve repair and regeneration: beyond the hollow nerve guidance conduitPeripheral NerveTissue engineering luminal fillersBiomaterialsNerve guidance conduitLuminal fillerstissue engineeringScience & TechnologyPeripheral nerve repair and regeneration remains among the greatest challenges in tissue engineering 29 and regenerative medicine. Even though peripheral nerve injuries (PNIs) are capable of some degree 30 of regeneration, frail recovery is seen even when the best microsurgical technique is applied. PNIs are 31 known to be very incapacitating for the patient, due to the deprivation of motor and sensory abilities. 32 Since there is no optimal solution for tackling this problem up to this day, the evolution in the field is 33 constant, with innovative designs of advanced nerve guidance conduits (NGCs) being reported every 34 day. As a basic concept, a NGC should act as a physical barrier from the external environment, 35 concomitantly acting as physical guidance for the regenerative axons across the gap lesion. NGCs 36 should also be able to retain the naturally released nerve growth factors secreted by the damaged nerve 37 stumps, as well as reducing the invasion of scar tissue-forming fibroblasts to the injury site. Based on 38 the neurobiological knowledge related to the events that succeed after a nerve injury, neuronal 39 subsistence is subjected to the existence of an ideal environment of growth factors, hormones, 40 cytokines, and extracellular matrix (ECM) factors. Therefore, it is known that multifunctional NGCs 41 fabricated through combinatorial approaches are needed to improve the functional and clinical 42 outcomes after PNIs. The present work overviews the current reports dealing with the several features 43 that can be used to improve peripheral nerve regeneration (PNR), ranging from the simple use of hollow 44 NGCs to tissue engineered intraluminal fillers, or to even more advanced strategies, comprising the 45 molecular and gene therapies as well as cell-based therapies.JO thanks the FCT for the funds provided under the program Investigador FCT 2015 (IF/01285/2015). The authors are also thankful to the FCT funded project NanoOptoNerv (ref. PTDC/NAN-MAT/29936/2017). And to the project Nano-accelerated nerve regeneration and optogenetic empowering of neuromuscular functionality (ref. PTDC/NAN-MAT/29936/2017).Frontiers MediaUniversidade do MinhoCarvalho, Cristiana RodriguesOliveira, Joaquim M.Reis, R. L.2019-11-222019-11-22T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/62363engCarvalho C. R., Oliveira J. M., Reis R. L. Modern trends for peripheral nerve repair and regeneration: Beyond the hollow nerve guidance conduit, Frontiers in Bioengineering and Biotechnology, Vol. 7, pp. 337, doi:10.3389/fbioe.2019.00337, 20192296-41852296-418510.3389/fbioe.2019.00337https://www.frontiersin.org/article/10.3389/fbioe.2019.00337info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:05:45Zoai:repositorium.sdum.uminho.pt:1822/62363Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:07:42.128050Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Modern trends for peripheral nerve repair and regeneration: beyond the hollow nerve guidance conduit
title Modern trends for peripheral nerve repair and regeneration: beyond the hollow nerve guidance conduit
spellingShingle Modern trends for peripheral nerve repair and regeneration: beyond the hollow nerve guidance conduit
Carvalho, Cristiana Rodrigues
Peripheral Nerve
Tissue engineering luminal fillers
Biomaterials
Nerve guidance conduit
Luminal fillers
tissue engineering
Science & Technology
title_short Modern trends for peripheral nerve repair and regeneration: beyond the hollow nerve guidance conduit
title_full Modern trends for peripheral nerve repair and regeneration: beyond the hollow nerve guidance conduit
title_fullStr Modern trends for peripheral nerve repair and regeneration: beyond the hollow nerve guidance conduit
title_full_unstemmed Modern trends for peripheral nerve repair and regeneration: beyond the hollow nerve guidance conduit
title_sort Modern trends for peripheral nerve repair and regeneration: beyond the hollow nerve guidance conduit
author Carvalho, Cristiana Rodrigues
author_facet Carvalho, Cristiana Rodrigues
Oliveira, Joaquim M.
Reis, R. L.
author_role author
author2 Oliveira, Joaquim M.
Reis, R. L.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Carvalho, Cristiana Rodrigues
Oliveira, Joaquim M.
Reis, R. L.
dc.subject.por.fl_str_mv Peripheral Nerve
Tissue engineering luminal fillers
Biomaterials
Nerve guidance conduit
Luminal fillers
tissue engineering
Science & Technology
topic Peripheral Nerve
Tissue engineering luminal fillers
Biomaterials
Nerve guidance conduit
Luminal fillers
tissue engineering
Science & Technology
description Peripheral nerve repair and regeneration remains among the greatest challenges in tissue engineering 29 and regenerative medicine. Even though peripheral nerve injuries (PNIs) are capable of some degree 30 of regeneration, frail recovery is seen even when the best microsurgical technique is applied. PNIs are 31 known to be very incapacitating for the patient, due to the deprivation of motor and sensory abilities. 32 Since there is no optimal solution for tackling this problem up to this day, the evolution in the field is 33 constant, with innovative designs of advanced nerve guidance conduits (NGCs) being reported every 34 day. As a basic concept, a NGC should act as a physical barrier from the external environment, 35 concomitantly acting as physical guidance for the regenerative axons across the gap lesion. NGCs 36 should also be able to retain the naturally released nerve growth factors secreted by the damaged nerve 37 stumps, as well as reducing the invasion of scar tissue-forming fibroblasts to the injury site. Based on 38 the neurobiological knowledge related to the events that succeed after a nerve injury, neuronal 39 subsistence is subjected to the existence of an ideal environment of growth factors, hormones, 40 cytokines, and extracellular matrix (ECM) factors. Therefore, it is known that multifunctional NGCs 41 fabricated through combinatorial approaches are needed to improve the functional and clinical 42 outcomes after PNIs. The present work overviews the current reports dealing with the several features 43 that can be used to improve peripheral nerve regeneration (PNR), ranging from the simple use of hollow 44 NGCs to tissue engineered intraluminal fillers, or to even more advanced strategies, comprising the 45 molecular and gene therapies as well as cell-based therapies.
publishDate 2019
dc.date.none.fl_str_mv 2019-11-22
2019-11-22T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/62363
url http://hdl.handle.net/1822/62363
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Carvalho C. R., Oliveira J. M., Reis R. L. Modern trends for peripheral nerve repair and regeneration: Beyond the hollow nerve guidance conduit, Frontiers in Bioengineering and Biotechnology, Vol. 7, pp. 337, doi:10.3389/fbioe.2019.00337, 2019
2296-4185
2296-4185
10.3389/fbioe.2019.00337
https://www.frontiersin.org/article/10.3389/fbioe.2019.00337
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595118034092032