Optical camera communications for IoT applications
Main Author: | |
---|---|
Publication Date: | 2023 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/41695 |
Summary: | The Internet of Things (IoT) has become increasingly present in our daily lives, revolutionizing the way we interact with technology. With the emergence of 5G, the number of connected devices has skyrocketed, further amplifying the importance of IoT. However, this rapid growth has raised concerns about the limitations of radio frequency (RF) technologies and their ability to handle the increasing number of devices within the limited available spectrum. As more devices connect to the IoT, the demand for other solutions with potential to alleviate the RF constrains becomes crucial to ensure seamless connectivity and prevent signal interference. This dissertation describes the development of a communication system using Optical Camera Communication (OCC), which transmits information through visual codes captured by a low-cost camera module connected to an embedded system. The visual codes require initial image processing for reception and decoding of information. This enables the exploration of advanced Deep Convolutional Neural Networks (D-CNNs), like YOLOx, through a comprehensive process of training, validation and testing with custom-designed 2D visual codes. Two types of symbols are introduced. The first type prioritizes accurate location, including features like an orientation indicator and symbol identifier, reducing the available space for data. The second type prioritizes data rate, utilizing the entire symbol exclusively for conveying data. The research findings underscore OCC’s potential as a viable solution to address RF limitations within the IoT landscape. Despite the system’s lower speed performance, it demonstrated effectiveness with a low error rate, indicating a successful implementation and evaluation of OCC using D-CNNs and custom visual codes. This showcases the system’s capacity to provide efficient, reliable, and cost-effective communication for IoT applications. The results open the door for further improvements and in-depth studies, positioning OCC as a promising alternative to traditional RF technologies. |
id |
RCAP_e67ab63b04f6e3d2ad98b70314642cfb |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/41695 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Optical camera communications for IoT applicationsIoTOCCYOLO2D visual codesCameraObject detectionThe Internet of Things (IoT) has become increasingly present in our daily lives, revolutionizing the way we interact with technology. With the emergence of 5G, the number of connected devices has skyrocketed, further amplifying the importance of IoT. However, this rapid growth has raised concerns about the limitations of radio frequency (RF) technologies and their ability to handle the increasing number of devices within the limited available spectrum. As more devices connect to the IoT, the demand for other solutions with potential to alleviate the RF constrains becomes crucial to ensure seamless connectivity and prevent signal interference. This dissertation describes the development of a communication system using Optical Camera Communication (OCC), which transmits information through visual codes captured by a low-cost camera module connected to an embedded system. The visual codes require initial image processing for reception and decoding of information. This enables the exploration of advanced Deep Convolutional Neural Networks (D-CNNs), like YOLOx, through a comprehensive process of training, validation and testing with custom-designed 2D visual codes. Two types of symbols are introduced. The first type prioritizes accurate location, including features like an orientation indicator and symbol identifier, reducing the available space for data. The second type prioritizes data rate, utilizing the entire symbol exclusively for conveying data. The research findings underscore OCC’s potential as a viable solution to address RF limitations within the IoT landscape. Despite the system’s lower speed performance, it demonstrated effectiveness with a low error rate, indicating a successful implementation and evaluation of OCC using D-CNNs and custom visual codes. This showcases the system’s capacity to provide efficient, reliable, and cost-effective communication for IoT applications. The results open the door for further improvements and in-depth studies, positioning OCC as a promising alternative to traditional RF technologies.A Internet das Coisas (IoT) tem vindo a tornar-se cada vez mais presente nas nossas vidas diárias, revolucionando a forma como interagimos com a tecnologia. Com o surgimento do 5G, o número de dispositivos ligados aumentou exponencialmente, destacando ainda mais a importância da IoT. No entanto, este rápido crescimento tem suscitado preocupações sobre as limitações das tecnologias de frequência de rádio (RF) e a sua capacidade para lidar com o crescente número de dispositivos dentro do limitado espetro disponível. À medida que mais dispositivos se ligam à IoT, a procura por outras soluções com potencial para aliviar as restrições das RF torna-se crucial para assegurar uma conectividade sem falhas e prevenir interferências de sinal. Esta dissertação descreve o desenvolvimento de um sistema de comunicação que utiliza Comunicação Ótica por Câmara (OCC), para transmitir informação através de códigos visuais capturados por um módulo de câmara de baixo custo controlado por um sistema embebido. Os códigos visuais requerem um processamento inicial da imagem para a receção e descodificação da informação. Isto permite a exploração de Redes Neuronais Convolucionais Profundas (D-CNNs) avançadas, como o YOLOx, através de um processo abrangente de treino, validação e teste com códigos visuais 2D especialmente concebidos. São introduzidos dois tipos de símbolos. O primeiro prioriza a localização precisa, incluindo recursos como um indicador de orientação e um identificador de símbolo, reduzindo o espaço disponível para os dados. O segundo tipo prioriza a taxa de dados, utilizando todo o símbolo exclusivamente para transmitir dados. Os resultados da pesquisa realçam o potencial da OCC como uma solução viável para lidar com as limitações das RF no panorama da IoT. Apesar do desempenho lento do sistema, este demonstrou eficácia com baixa taxa de erro, indicando uma implementação e avaliação bem-sucedidas do OCC usando DCNNs e códigos visuais personalizados. Isto demonstra a capacidade do sistema em fornecer uma comunicação eficiente, fiável e económica para aplicações IoT. Os resultados abrem caminho para melhorias adicionais e estudos mais aprofundados, posicionando o OCC como uma alternativa promissora às tecnologias RF tradicionais.2024-04-24T08:17:43Z2023-12-07T00:00:00Z2023-12-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/41695engFernandes, Dario Duarteinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:56:32Zoai:ria.ua.pt:10773/41695Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:24:22.086901Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Optical camera communications for IoT applications |
title |
Optical camera communications for IoT applications |
spellingShingle |
Optical camera communications for IoT applications Fernandes, Dario Duarte IoT OCC YOLO 2D visual codes Camera Object detection |
title_short |
Optical camera communications for IoT applications |
title_full |
Optical camera communications for IoT applications |
title_fullStr |
Optical camera communications for IoT applications |
title_full_unstemmed |
Optical camera communications for IoT applications |
title_sort |
Optical camera communications for IoT applications |
author |
Fernandes, Dario Duarte |
author_facet |
Fernandes, Dario Duarte |
author_role |
author |
dc.contributor.author.fl_str_mv |
Fernandes, Dario Duarte |
dc.subject.por.fl_str_mv |
IoT OCC YOLO 2D visual codes Camera Object detection |
topic |
IoT OCC YOLO 2D visual codes Camera Object detection |
description |
The Internet of Things (IoT) has become increasingly present in our daily lives, revolutionizing the way we interact with technology. With the emergence of 5G, the number of connected devices has skyrocketed, further amplifying the importance of IoT. However, this rapid growth has raised concerns about the limitations of radio frequency (RF) technologies and their ability to handle the increasing number of devices within the limited available spectrum. As more devices connect to the IoT, the demand for other solutions with potential to alleviate the RF constrains becomes crucial to ensure seamless connectivity and prevent signal interference. This dissertation describes the development of a communication system using Optical Camera Communication (OCC), which transmits information through visual codes captured by a low-cost camera module connected to an embedded system. The visual codes require initial image processing for reception and decoding of information. This enables the exploration of advanced Deep Convolutional Neural Networks (D-CNNs), like YOLOx, through a comprehensive process of training, validation and testing with custom-designed 2D visual codes. Two types of symbols are introduced. The first type prioritizes accurate location, including features like an orientation indicator and symbol identifier, reducing the available space for data. The second type prioritizes data rate, utilizing the entire symbol exclusively for conveying data. The research findings underscore OCC’s potential as a viable solution to address RF limitations within the IoT landscape. Despite the system’s lower speed performance, it demonstrated effectiveness with a low error rate, indicating a successful implementation and evaluation of OCC using D-CNNs and custom visual codes. This showcases the system’s capacity to provide efficient, reliable, and cost-effective communication for IoT applications. The results open the door for further improvements and in-depth studies, positioning OCC as a promising alternative to traditional RF technologies. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-07T00:00:00Z 2023-12-07 2024-04-24T08:17:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/41695 |
url |
http://hdl.handle.net/10773/41695 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833594567977336832 |