Optimal control by multiple shooting and weighted tchebycheff penalty-based scalarization

Detalhes bibliográficos
Autor(a) principal: Ramadas, Gisela C. Vieira
Data de Publicação: 2021
Outros Autores: Fernandes, Edite M. G. P., Rocha, Ana Maria A. C., Costa, M. Fernanda P.
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: https://hdl.handle.net/1822/78200
Resumo: Numerical direct multiple shooting (MS) methods have shown to be important and efficient tools to solve optimal control problems (OCP). The use of an MS method to solve the OCP gives rise to a finite-dimensional optimization problem with a set of "continuity constraints" that should be satisfied together with the other algebraic states and control constraints of the OCP. Using non-negative functions to measure the violation of the "continuity constraints" and of the algebraic constraints separately, the finite-dimensional problem is reformulated as a multi-objective problem with three objectives to be optimized. This paper explores the use of a multi-objective approach, the weighted Tchebycheff scalarization method, to minimize the objective functional and satisfy all the constraint conditions of the OCP. During implementation, a penalty term is added to the Tchebycheff aggregated objective function aiming to force and accelerate the convergence of the constraint violations to zero. The effectiveness of the new methodology is illustrated with the experiments carried out with six OCP.
id RCAP_e2f919d01209ddfc8bedcbf933a21ef9
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/78200
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Optimal control by multiple shooting and weighted tchebycheff penalty-based scalarizationOptimal controlMultiple shootingTchebycheff scalarizationScience & TechnologyNumerical direct multiple shooting (MS) methods have shown to be important and efficient tools to solve optimal control problems (OCP). The use of an MS method to solve the OCP gives rise to a finite-dimensional optimization problem with a set of "continuity constraints" that should be satisfied together with the other algebraic states and control constraints of the OCP. Using non-negative functions to measure the violation of the "continuity constraints" and of the algebraic constraints separately, the finite-dimensional problem is reformulated as a multi-objective problem with three objectives to be optimized. This paper explores the use of a multi-objective approach, the weighted Tchebycheff scalarization method, to minimize the objective functional and satisfy all the constraint conditions of the OCP. During implementation, a penalty term is added to the Tchebycheff aggregated objective function aiming to force and accelerate the convergence of the constraint violations to zero. The effectiveness of the new methodology is illustrated with the experiments carried out with six OCP.- This work has been supported by FCT - Fundacao para a Ciencia e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020, UIDB/00013/2020 and UIDP/00013/2020 of CMAT-UM. We also acknowledge the financial support of CIDEM.SpringerUniversidade do MinhoRamadas, Gisela C. VieiraFernandes, Edite M. G. P.Rocha, Ana Maria A. C.Costa, M. Fernanda P.2021-01-012021-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/78200eng978-3-030-86975-50302-974310.1007/978-3-030-86976-2_23978-3-030-86976-2https://link.springer.com/chapter/10.1007/978-3-030-86976-2_23info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T05:40:35Zoai:repositorium.sdum.uminho.pt:1822/78200Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:26:18.645606Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Optimal control by multiple shooting and weighted tchebycheff penalty-based scalarization
title Optimal control by multiple shooting and weighted tchebycheff penalty-based scalarization
spellingShingle Optimal control by multiple shooting and weighted tchebycheff penalty-based scalarization
Ramadas, Gisela C. Vieira
Optimal control
Multiple shooting
Tchebycheff scalarization
Science & Technology
title_short Optimal control by multiple shooting and weighted tchebycheff penalty-based scalarization
title_full Optimal control by multiple shooting and weighted tchebycheff penalty-based scalarization
title_fullStr Optimal control by multiple shooting and weighted tchebycheff penalty-based scalarization
title_full_unstemmed Optimal control by multiple shooting and weighted tchebycheff penalty-based scalarization
title_sort Optimal control by multiple shooting and weighted tchebycheff penalty-based scalarization
author Ramadas, Gisela C. Vieira
author_facet Ramadas, Gisela C. Vieira
Fernandes, Edite M. G. P.
Rocha, Ana Maria A. C.
Costa, M. Fernanda P.
author_role author
author2 Fernandes, Edite M. G. P.
Rocha, Ana Maria A. C.
Costa, M. Fernanda P.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Ramadas, Gisela C. Vieira
Fernandes, Edite M. G. P.
Rocha, Ana Maria A. C.
Costa, M. Fernanda P.
dc.subject.por.fl_str_mv Optimal control
Multiple shooting
Tchebycheff scalarization
Science & Technology
topic Optimal control
Multiple shooting
Tchebycheff scalarization
Science & Technology
description Numerical direct multiple shooting (MS) methods have shown to be important and efficient tools to solve optimal control problems (OCP). The use of an MS method to solve the OCP gives rise to a finite-dimensional optimization problem with a set of "continuity constraints" that should be satisfied together with the other algebraic states and control constraints of the OCP. Using non-negative functions to measure the violation of the "continuity constraints" and of the algebraic constraints separately, the finite-dimensional problem is reformulated as a multi-objective problem with three objectives to be optimized. This paper explores the use of a multi-objective approach, the weighted Tchebycheff scalarization method, to minimize the objective functional and satisfy all the constraint conditions of the OCP. During implementation, a penalty term is added to the Tchebycheff aggregated objective function aiming to force and accelerate the convergence of the constraint violations to zero. The effectiveness of the new methodology is illustrated with the experiments carried out with six OCP.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
2021-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/78200
url https://hdl.handle.net/1822/78200
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 978-3-030-86975-5
0302-9743
10.1007/978-3-030-86976-2_23
978-3-030-86976-2
https://link.springer.com/chapter/10.1007/978-3-030-86976-2_23
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595315399163904