How to detect a small cluster in big data?
Main Author: | |
---|---|
Publication Date: | 2014 |
Other Authors: | |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://doi.org/10.18803/capsi.v14.162-173 |
Summary: | João, P., & Lobo, V. (2014). How to detect a small cluster in big data? In Atas da 14ª Conferência da Associação Portuguesa de Sistemas de Informação: Os Sistemas de Informação na Saúde (Vol. 14, pp. 162-173). (Atas da Conferencia da Associacao Portuguesa de Sistemas de Informacao). Fundação Luis de Molina. DOI: 10.18803/capsi.v14.162-173 |
id |
RCAP_e2ac577a0737304adda817eeb22a397e |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/53819 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
How to detect a small cluster in big data?Big dataClusterData miningHSOMOutlier detectionSOMInformation Systems and ManagementManagement Information SystemsManagement of Technology and InnovationInformation SystemsComputer Science ApplicationsJoão, P., & Lobo, V. (2014). How to detect a small cluster in big data? In Atas da 14ª Conferência da Associação Portuguesa de Sistemas de Informação: Os Sistemas de Informação na Saúde (Vol. 14, pp. 162-173). (Atas da Conferencia da Associacao Portuguesa de Sistemas de Informacao). Fundação Luis de Molina. DOI: 10.18803/capsi.v14.162-173Detecting small clusters in a large amount of data is a difficult problem, mainly when there are only a few samples to be detected. There are general purpose solutions for small cluster detection, but many times they are not adequate for specific data. Artificial Intelligence techniques have been proposed, because they present the advantage of requiring little or no a priori assumption on the data distributions. The amount and higher dimensional nature of big data makes it too complex to be processed and analyzed by traditional methods. Hierarchical Self Organizing Maps, (HSOM) can improve the decision making with an approach based on specialization of Self Organizing Maps (SOM), dimensionality reduction and visualization of clusters. The goal is to propose a methodology to detect and visualize small clusters in the data with a toy case, where traditional human based approaches are not possible or are too complex to process, and the results clearly demonstrate that the HSOM based method outperforms the most widely adopted traditional methods revealing a number of small clusters hidden in data.Fundação Luis de MolinaNOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNJoão, PauloLobo, Victor2018-12-06T23:05:42Z2014-01-012014-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion12application/pdfhttps://doi.org/10.18803/capsi.v14.162-173eng978-989-8132-13-0PURE: 6551787http://www.scopus.com/inward/record.url?scp=85047217407&partnerID=8YFLogxKhttps://doi.org/10.18803/capsi.v14.162-173info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:35:56Zoai:run.unl.pt:10362/53819Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:06:59.517901Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
How to detect a small cluster in big data? |
title |
How to detect a small cluster in big data? |
spellingShingle |
How to detect a small cluster in big data? João, Paulo Big data Cluster Data mining HSOM Outlier detection SOM Information Systems and Management Management Information Systems Management of Technology and Innovation Information Systems Computer Science Applications |
title_short |
How to detect a small cluster in big data? |
title_full |
How to detect a small cluster in big data? |
title_fullStr |
How to detect a small cluster in big data? |
title_full_unstemmed |
How to detect a small cluster in big data? |
title_sort |
How to detect a small cluster in big data? |
author |
João, Paulo |
author_facet |
João, Paulo Lobo, Victor |
author_role |
author |
author2 |
Lobo, Victor |
author2_role |
author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
João, Paulo Lobo, Victor |
dc.subject.por.fl_str_mv |
Big data Cluster Data mining HSOM Outlier detection SOM Information Systems and Management Management Information Systems Management of Technology and Innovation Information Systems Computer Science Applications |
topic |
Big data Cluster Data mining HSOM Outlier detection SOM Information Systems and Management Management Information Systems Management of Technology and Innovation Information Systems Computer Science Applications |
description |
João, P., & Lobo, V. (2014). How to detect a small cluster in big data? In Atas da 14ª Conferência da Associação Portuguesa de Sistemas de Informação: Os Sistemas de Informação na Saúde (Vol. 14, pp. 162-173). (Atas da Conferencia da Associacao Portuguesa de Sistemas de Informacao). Fundação Luis de Molina. DOI: 10.18803/capsi.v14.162-173 |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-01 2014-01-01T00:00:00Z 2018-12-06T23:05:42Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.18803/capsi.v14.162-173 |
url |
https://doi.org/10.18803/capsi.v14.162-173 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-989-8132-13-0 PURE: 6551787 http://www.scopus.com/inward/record.url?scp=85047217407&partnerID=8YFLogxK https://doi.org/10.18803/capsi.v14.162-173 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
12 application/pdf |
dc.publisher.none.fl_str_mv |
Fundação Luis de Molina |
publisher.none.fl_str_mv |
Fundação Luis de Molina |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596445309009920 |