Building for tomorrow: Analyzing ideal thermal transmittances in the face of climate change in Brazil

Bibliographic Details
Main Author: Rodrigues, Eugénio
Publication Date: 2024
Other Authors: Parente, Jean, Fernandes, Marco S.
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10316/110382
https://doi.org/10.1016/j.apenergy.2023.122360
https://doi.org/10.54499/PTDC/EME-REN/3460/2021
Summary: The climate will become hotter, and buildings will perform differently as outdoor conditions evolve. If the lowest energy demand is desired, it is crucial to determine the ideal thermophysical properties of the envelope over the buildings' life span. However, the scientific literature is still scarce in providing a compelling answer. Therefore, this study (i) determines ideal thermal transmittance values (U-values) for present-day and future climates, (ii) determines to what extent the thermophysical properties will need to change to remain ideal, (iii) identifies different trends of U-values over time, (iv) establishes a relationship between outdoor air temperatures, cooling and heating setpoints, and ideal U-values, and (v) proposes a set of design strategies according to each trend. The EPSAP generative design method was used to create a large dataset of residential buildings with random geometries and U-values to evaluate their energy demand for heating and cooling in EnergyPlus. The thermal performance of each building was evaluated for 30 locations in Brazil for the current period and two future timeframes (2050 and 2080). The Future Weather Generator tool was used to morph today's typical meteorological weather to match the EC-Earth3 data for the SSP5–8.5 scenario. Although climate change has a similar relative impact, its consequences differ over time in each location. The ideal U-values have different trends in different regions: (a) remaining unchanged in the future, (b) changing from being the highest possible to the lowest of the analyzed range in 2050 or 2080, and (c) being mid-range values in the present and with similar or lower values in the future climate. The impact on the thermal loads of maintaining the present-day ideal U-values also varies significantly in the future timeframes, from being nil to representing an increase reaching 30 % in 2050 (Δ 2.94 MW⋅h ± 0.06 MW⋅h) and 57 % in 2080 (Δ 6.05 MW⋅h ± 0.09 MW⋅h). Therefore, building design professionals need to use different strategies according to each region and consider how climate evolves during the lifetime of the building.
id RCAP_e1e261dc2045d24eb297541b8e8a8618
oai_identifier_str oai:estudogeral.uc.pt:10316/110382
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Building for tomorrow: Analyzing ideal thermal transmittances in the face of climate change in BrazilClimate changeMitigationResidential buildingsThermal transmittanceBrazilThe climate will become hotter, and buildings will perform differently as outdoor conditions evolve. If the lowest energy demand is desired, it is crucial to determine the ideal thermophysical properties of the envelope over the buildings' life span. However, the scientific literature is still scarce in providing a compelling answer. Therefore, this study (i) determines ideal thermal transmittance values (U-values) for present-day and future climates, (ii) determines to what extent the thermophysical properties will need to change to remain ideal, (iii) identifies different trends of U-values over time, (iv) establishes a relationship between outdoor air temperatures, cooling and heating setpoints, and ideal U-values, and (v) proposes a set of design strategies according to each trend. The EPSAP generative design method was used to create a large dataset of residential buildings with random geometries and U-values to evaluate their energy demand for heating and cooling in EnergyPlus. The thermal performance of each building was evaluated for 30 locations in Brazil for the current period and two future timeframes (2050 and 2080). The Future Weather Generator tool was used to morph today's typical meteorological weather to match the EC-Earth3 data for the SSP5–8.5 scenario. Although climate change has a similar relative impact, its consequences differ over time in each location. The ideal U-values have different trends in different regions: (a) remaining unchanged in the future, (b) changing from being the highest possible to the lowest of the analyzed range in 2050 or 2080, and (c) being mid-range values in the present and with similar or lower values in the future climate. The impact on the thermal loads of maintaining the present-day ideal U-values also varies significantly in the future timeframes, from being nil to representing an increase reaching 30 % in 2050 (Δ 2.94 MW⋅h ± 0.06 MW⋅h) and 57 % in 2080 (Δ 6.05 MW⋅h ± 0.09 MW⋅h). Therefore, building design professionals need to use different strategies according to each region and consider how climate evolves during the lifetime of the building.8617-2E18-19EE | EUGÉNIO MIGUEL DE SOUSA RODRIGUESinfo:eu-repo/semantics/publishedVersionElsevier2024-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/110382https://hdl.handle.net/10316/110382https://doi.org/10.1016/j.apenergy.2023.122360https://doi.org/10.54499/PTDC/EME-REN/3460/2021engcv-prod-3404218Rodrigues, EugénioParente, JeanFernandes, Marco S.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2023-11-21T11:28:21Zoai:estudogeral.uc.pt:10316/110382Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T06:02:22.782525Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Building for tomorrow: Analyzing ideal thermal transmittances in the face of climate change in Brazil
title Building for tomorrow: Analyzing ideal thermal transmittances in the face of climate change in Brazil
spellingShingle Building for tomorrow: Analyzing ideal thermal transmittances in the face of climate change in Brazil
Rodrigues, Eugénio
Climate change
Mitigation
Residential buildings
Thermal transmittance
Brazil
title_short Building for tomorrow: Analyzing ideal thermal transmittances in the face of climate change in Brazil
title_full Building for tomorrow: Analyzing ideal thermal transmittances in the face of climate change in Brazil
title_fullStr Building for tomorrow: Analyzing ideal thermal transmittances in the face of climate change in Brazil
title_full_unstemmed Building for tomorrow: Analyzing ideal thermal transmittances in the face of climate change in Brazil
title_sort Building for tomorrow: Analyzing ideal thermal transmittances in the face of climate change in Brazil
author Rodrigues, Eugénio
author_facet Rodrigues, Eugénio
Parente, Jean
Fernandes, Marco S.
author_role author
author2 Parente, Jean
Fernandes, Marco S.
author2_role author
author
dc.contributor.author.fl_str_mv Rodrigues, Eugénio
Parente, Jean
Fernandes, Marco S.
dc.subject.por.fl_str_mv Climate change
Mitigation
Residential buildings
Thermal transmittance
Brazil
topic Climate change
Mitigation
Residential buildings
Thermal transmittance
Brazil
description The climate will become hotter, and buildings will perform differently as outdoor conditions evolve. If the lowest energy demand is desired, it is crucial to determine the ideal thermophysical properties of the envelope over the buildings' life span. However, the scientific literature is still scarce in providing a compelling answer. Therefore, this study (i) determines ideal thermal transmittance values (U-values) for present-day and future climates, (ii) determines to what extent the thermophysical properties will need to change to remain ideal, (iii) identifies different trends of U-values over time, (iv) establishes a relationship between outdoor air temperatures, cooling and heating setpoints, and ideal U-values, and (v) proposes a set of design strategies according to each trend. The EPSAP generative design method was used to create a large dataset of residential buildings with random geometries and U-values to evaluate their energy demand for heating and cooling in EnergyPlus. The thermal performance of each building was evaluated for 30 locations in Brazil for the current period and two future timeframes (2050 and 2080). The Future Weather Generator tool was used to morph today's typical meteorological weather to match the EC-Earth3 data for the SSP5–8.5 scenario. Although climate change has a similar relative impact, its consequences differ over time in each location. The ideal U-values have different trends in different regions: (a) remaining unchanged in the future, (b) changing from being the highest possible to the lowest of the analyzed range in 2050 or 2080, and (c) being mid-range values in the present and with similar or lower values in the future climate. The impact on the thermal loads of maintaining the present-day ideal U-values also varies significantly in the future timeframes, from being nil to representing an increase reaching 30 % in 2050 (Δ 2.94 MW⋅h ± 0.06 MW⋅h) and 57 % in 2080 (Δ 6.05 MW⋅h ± 0.09 MW⋅h). Therefore, building design professionals need to use different strategies according to each region and consider how climate evolves during the lifetime of the building.
publishDate 2024
dc.date.none.fl_str_mv 2024-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10316/110382
https://hdl.handle.net/10316/110382
https://doi.org/10.1016/j.apenergy.2023.122360
https://doi.org/10.54499/PTDC/EME-REN/3460/2021
url https://hdl.handle.net/10316/110382
https://doi.org/10.1016/j.apenergy.2023.122360
https://doi.org/10.54499/PTDC/EME-REN/3460/2021
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv cv-prod-3404218
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833602555739897856