A influência do processo de produção de scaffolds na regeneração óssea

Bibliographic Details
Main Author: Vallejo, Mariana Costa da Silva
Publication Date: 2014
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.6/4724
Summary: The raising level of bone defects worldwide has become a major concern of public health. Autografts, allografts and xenografts are some alternatives that are currently being used to overcome bone related problems. However the risks of infection and immunological response from the patient are very high. To surpass these handicaps, new biodegradable and biocompatible structures (scaffolds) have been produced in the area of tissue engineering to be used as temporarily bone substitutes. These structures allow cell adhesion and proliferation, while giving mechanical support to the newly bone formation. Several biocompatible materials have been used so far for scaffolds production. Nevertheless it is fundamental that the right production method is chosen, since it will influence the regenerative process. In this study a chitosan/alginate/β-TCP scaffold was produced by three different techniques: rapid prototyping using a Fab@home 3D printer, freeze-drying and foam replication method. The scaffolds were characterized by Fourier transformed Infrared spectroscopy, X-ray diffraction, Energy dispersion Spectroscopy, Scanning Electronic microscopy and water contact angle. Moreover, the porosity, mechanical properties, swelling profile, and degradation behavior of the different scaffolds were also characterized. The cytotoxic profile of the scaffolds was studied using a rezazurin assay. The cellular adhesion, proliferation and internalization in the scaffolds were studied by optical, scanning electronic and confocal laser scanning microscopy. The antimicrobial properties of the different scaffolds were tested against Staphylococcus Aureus, using a Kirby-Bauer disk diffusion method. All the results revealed that the chitosan/alginate/β-TCP scaffolds produced by rapid prototyping had the most suitable properties for being applied in bone regeneration.
id RCAP_e14c04730e23b220cc6f098dd377f139
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/4724
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling A influência do processo de produção de scaffolds na regeneração ósseaChitosan/Alginate/ß-TCP scaffoldsFoam replication MethodFreeze-dryingRapid PrototypingBone regenerationThe raising level of bone defects worldwide has become a major concern of public health. Autografts, allografts and xenografts are some alternatives that are currently being used to overcome bone related problems. However the risks of infection and immunological response from the patient are very high. To surpass these handicaps, new biodegradable and biocompatible structures (scaffolds) have been produced in the area of tissue engineering to be used as temporarily bone substitutes. These structures allow cell adhesion and proliferation, while giving mechanical support to the newly bone formation. Several biocompatible materials have been used so far for scaffolds production. Nevertheless it is fundamental that the right production method is chosen, since it will influence the regenerative process. In this study a chitosan/alginate/β-TCP scaffold was produced by three different techniques: rapid prototyping using a Fab@home 3D printer, freeze-drying and foam replication method. The scaffolds were characterized by Fourier transformed Infrared spectroscopy, X-ray diffraction, Energy dispersion Spectroscopy, Scanning Electronic microscopy and water contact angle. Moreover, the porosity, mechanical properties, swelling profile, and degradation behavior of the different scaffolds were also characterized. The cytotoxic profile of the scaffolds was studied using a rezazurin assay. The cellular adhesion, proliferation and internalization in the scaffolds were studied by optical, scanning electronic and confocal laser scanning microscopy. The antimicrobial properties of the different scaffolds were tested against Staphylococcus Aureus, using a Kirby-Bauer disk diffusion method. All the results revealed that the chitosan/alginate/β-TCP scaffolds produced by rapid prototyping had the most suitable properties for being applied in bone regeneration.Correia, Ilídio Joaquim SobreirauBibliorumVallejo, Mariana Costa da Silva2018-03-28T15:59:22Z2014-10-272014-10-072014-10-27T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/4724urn:tid:201329360enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-11T15:26:51Zoai:ubibliorum.ubi.pt:10400.6/4724Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T01:26:22.868292Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv A influência do processo de produção de scaffolds na regeneração óssea
title A influência do processo de produção de scaffolds na regeneração óssea
spellingShingle A influência do processo de produção de scaffolds na regeneração óssea
Vallejo, Mariana Costa da Silva
Chitosan/Alginate/ß-TCP scaffolds
Foam replication Method
Freeze-drying
Rapid Prototyping
Bone regeneration
title_short A influência do processo de produção de scaffolds na regeneração óssea
title_full A influência do processo de produção de scaffolds na regeneração óssea
title_fullStr A influência do processo de produção de scaffolds na regeneração óssea
title_full_unstemmed A influência do processo de produção de scaffolds na regeneração óssea
title_sort A influência do processo de produção de scaffolds na regeneração óssea
author Vallejo, Mariana Costa da Silva
author_facet Vallejo, Mariana Costa da Silva
author_role author
dc.contributor.none.fl_str_mv Correia, Ilídio Joaquim Sobreira
uBibliorum
dc.contributor.author.fl_str_mv Vallejo, Mariana Costa da Silva
dc.subject.por.fl_str_mv Chitosan/Alginate/ß-TCP scaffolds
Foam replication Method
Freeze-drying
Rapid Prototyping
Bone regeneration
topic Chitosan/Alginate/ß-TCP scaffolds
Foam replication Method
Freeze-drying
Rapid Prototyping
Bone regeneration
description The raising level of bone defects worldwide has become a major concern of public health. Autografts, allografts and xenografts are some alternatives that are currently being used to overcome bone related problems. However the risks of infection and immunological response from the patient are very high. To surpass these handicaps, new biodegradable and biocompatible structures (scaffolds) have been produced in the area of tissue engineering to be used as temporarily bone substitutes. These structures allow cell adhesion and proliferation, while giving mechanical support to the newly bone formation. Several biocompatible materials have been used so far for scaffolds production. Nevertheless it is fundamental that the right production method is chosen, since it will influence the regenerative process. In this study a chitosan/alginate/β-TCP scaffold was produced by three different techniques: rapid prototyping using a Fab@home 3D printer, freeze-drying and foam replication method. The scaffolds were characterized by Fourier transformed Infrared spectroscopy, X-ray diffraction, Energy dispersion Spectroscopy, Scanning Electronic microscopy and water contact angle. Moreover, the porosity, mechanical properties, swelling profile, and degradation behavior of the different scaffolds were also characterized. The cytotoxic profile of the scaffolds was studied using a rezazurin assay. The cellular adhesion, proliferation and internalization in the scaffolds were studied by optical, scanning electronic and confocal laser scanning microscopy. The antimicrobial properties of the different scaffolds were tested against Staphylococcus Aureus, using a Kirby-Bauer disk diffusion method. All the results revealed that the chitosan/alginate/β-TCP scaffolds produced by rapid prototyping had the most suitable properties for being applied in bone regeneration.
publishDate 2014
dc.date.none.fl_str_mv 2014-10-27
2014-10-07
2014-10-27T00:00:00Z
2018-03-28T15:59:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/4724
urn:tid:201329360
url http://hdl.handle.net/10400.6/4724
identifier_str_mv urn:tid:201329360
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600981044035584