Hybrid framework to image segmentation
Main Author: | |
---|---|
Publication Date: | 2009 |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10198/2241 |
Summary: | Indexado ISI |
id |
RCAP_e11f057f4947635ab847d85dff49425c |
---|---|
oai_identifier_str |
oai:bibliotecadigital.ipb.pt:10198/2241 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Hybrid framework to image segmentationImage segmentationHybrid frameworkWatershedSpectral methodsIndexado ISIThis paper proposes a new hybrid framework to image segmentation which combines edge- and region-based information with spectral techniques through the morphological algorithm of watersheds. The image is represented by a weighted undirected graph, whose nodes correspond to over-segmented regions (atomic regions), instead of pixels, that decreases the complexity of the overall algorithm. In addition, the link weights between the nodes are calculated through the intensity similarities combined with the intervening contours information among atomic regions. We outline a procedure for algorithm evaluation through the comparison with some of the most popular segmentation algorithms: the mean-shift-based algorithm, a multiscale graph based segmentation method, and JSEG method for multiscale segmentation of colour and texture. Experiments on the Berkeley segmentation database indicate that the proposed segmentation framework yields better segmentation results due to its region-based representation.SpringerBiblioteca Digital do IPBMonteiro, Fernando C.2010-03-15T11:43:00Z20092009-01-01T00:00:00Zbook partinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10198/2241engMonteiro, Fernando C. (2009). Hybrid Framework to Image Segmentation. IN Neural Information Processing. Berlin: Springer-Verlag. ISBN 978-3-642-10682-8. p.657-666.978-3-642-10682-80302-9743info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-25T11:55:26Zoai:bibliotecadigital.ipb.pt:10198/2241Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T11:17:01.094403Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Hybrid framework to image segmentation |
title |
Hybrid framework to image segmentation |
spellingShingle |
Hybrid framework to image segmentation Monteiro, Fernando C. Image segmentation Hybrid framework Watershed Spectral methods |
title_short |
Hybrid framework to image segmentation |
title_full |
Hybrid framework to image segmentation |
title_fullStr |
Hybrid framework to image segmentation |
title_full_unstemmed |
Hybrid framework to image segmentation |
title_sort |
Hybrid framework to image segmentation |
author |
Monteiro, Fernando C. |
author_facet |
Monteiro, Fernando C. |
author_role |
author |
dc.contributor.none.fl_str_mv |
Biblioteca Digital do IPB |
dc.contributor.author.fl_str_mv |
Monteiro, Fernando C. |
dc.subject.por.fl_str_mv |
Image segmentation Hybrid framework Watershed Spectral methods |
topic |
Image segmentation Hybrid framework Watershed Spectral methods |
description |
Indexado ISI |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 2009-01-01T00:00:00Z 2010-03-15T11:43:00Z |
dc.type.driver.fl_str_mv |
book part |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10198/2241 |
url |
http://hdl.handle.net/10198/2241 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Monteiro, Fernando C. (2009). Hybrid Framework to Image Segmentation. IN Neural Information Processing. Berlin: Springer-Verlag. ISBN 978-3-642-10682-8. p.657-666. 978-3-642-10682-8 0302-9743 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833591759356035072 |