Improvements on the KNN classifier
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2013 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/10923 |
Resumo: | Dissertação para obtenção do Grau de Mestre em Engenharia Informática |
| id |
RCAP_e11cdb0a7396e0bae7719ce4e0b6d46a |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/10923 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Improvements on the KNN classifierArtificial intelligenceClassification algorithmsKNNK-nearest neighbor algorithmLazy-learningEager-learningDissertação para obtenção do Grau de Mestre em Engenharia InformáticaThe object classification is an important area within the artificial intelligence and its application extends to various areas, whether or not in the branch of science. Among the other classifiers, the K-nearest neighbor (KNN) is among the most simple and accurate especially in environments where the data distribution is unknown or apparently not parameterizable. This algorithm assigns the classifying element the major class in the K nearest neighbors. According to the original algorithm, this classification implies the calculation of the distances between the classifying instance and each one of the training objects. If on the one hand, having an extensive training set is an element of importance in order to obtain a high accuracy, on the other hand, it makes the classification of each object slower due to its lazy-learning algorithm nature. Indeed, this algorithm does not provide any means of storing information about the previous calculated classifications,making the calculation of the classification of two equal instances mandatory. In a way, it may be said that this classifier does not learn. This dissertation focuses on the lazy-learning fragility and intends to propose a solution that transforms the KNNinto an eager-learning classifier. In other words, it is intended that the algorithm learns effectively with the training set, thus avoiding redundant calculations. In the context of the proposed change in the algorithm, it is important to highlight the attributes that most characterize the objects according to their discriminating power. In this framework, there will be a study regarding the implementation of these transformations on data of different types: continuous and/or categorical.Faculdade de Ciências e TecnologiaSilva, JoaquimRUNMestre, Ricardo Jorge Palheira2014-01-02T11:20:16Z20132013-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/10923enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:14:45Zoai:run.unl.pt:10362/10923Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:45:47.737287Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Improvements on the KNN classifier |
| title |
Improvements on the KNN classifier |
| spellingShingle |
Improvements on the KNN classifier Mestre, Ricardo Jorge Palheira Artificial intelligence Classification algorithms KNN K-nearest neighbor algorithm Lazy-learning Eager-learning |
| title_short |
Improvements on the KNN classifier |
| title_full |
Improvements on the KNN classifier |
| title_fullStr |
Improvements on the KNN classifier |
| title_full_unstemmed |
Improvements on the KNN classifier |
| title_sort |
Improvements on the KNN classifier |
| author |
Mestre, Ricardo Jorge Palheira |
| author_facet |
Mestre, Ricardo Jorge Palheira |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Silva, Joaquim RUN |
| dc.contributor.author.fl_str_mv |
Mestre, Ricardo Jorge Palheira |
| dc.subject.por.fl_str_mv |
Artificial intelligence Classification algorithms KNN K-nearest neighbor algorithm Lazy-learning Eager-learning |
| topic |
Artificial intelligence Classification algorithms KNN K-nearest neighbor algorithm Lazy-learning Eager-learning |
| description |
Dissertação para obtenção do Grau de Mestre em Engenharia Informática |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013 2013-01-01T00:00:00Z 2014-01-02T11:20:16Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/10923 |
| url |
http://hdl.handle.net/10362/10923 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Faculdade de Ciências e Tecnologia |
| publisher.none.fl_str_mv |
Faculdade de Ciências e Tecnologia |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596172416057344 |