The longest filled common subsequence problem
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2017 |
| Outros Autores: | , , |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | https://doi.org/10.4230/LIPIcs.CPM.2017.14 |
Resumo: | Castelli, M., Dondi, R., Mauri, G., & Zoppis, I. (2017). The longest filled common subsequence problem. In 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017 (Vol. 78). [14] Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.CPM.2017.14 |
| id |
RCAP_e0f4d2a5d70ae63d08841a6731e2ee86 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/28045 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
The longest filled common subsequence problemApproximation algorithmsComputational complexityFixed-parameter algorithmsLongest common subsequenceSoftwareCastelli, M., Dondi, R., Mauri, G., & Zoppis, I. (2017). The longest filled common subsequence problem. In 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017 (Vol. 78). [14] Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.CPM.2017.14Inspired by a recent approach for genome reconstruction from incomplete data, we consider a variant of the longest common subsequence problem for the comparison of two sequences, one of which is incomplete, i.e. it has some missing elements. The new combinatorial problem, called Longest Filled Common Subsequence, given two sequences A and B, and a multiset M of symbols missing in B, asks for a sequence B∗ obtained by inserting the symbols of M into B so that B∗ induces a common subsequence with A of maximum length. First, we investigate the computational and approximation complexity of the problem and we show that it is NP-hard and APX-hard when A contains at most two occurrences of each symbol. Then, we give a 3/5-approximation algorithm for the problem. Finally, we present a fixed-parameter algorithm, when the problem is parameterized by the number of symbols inserted in B that "match" symbols of A.Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl PublishingNOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNCastelli, MauroDondi, RiccardoMauri, GiancarloZoppis, Italo2018-01-11T23:28:33Z2017-07-012017-07-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://doi.org/10.4230/LIPIcs.CPM.2017.14eng9783959770392PURE: 3236258http://www.scopus.com/inward/record.url?scp=85027276315&partnerID=8YFLogxKhttps://doi.org/10.4230/LIPIcs.CPM.2017.14info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:29:37Zoai:run.unl.pt:10362/28045Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:00:43.965968Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
The longest filled common subsequence problem |
| title |
The longest filled common subsequence problem |
| spellingShingle |
The longest filled common subsequence problem Castelli, Mauro Approximation algorithms Computational complexity Fixed-parameter algorithms Longest common subsequence Software |
| title_short |
The longest filled common subsequence problem |
| title_full |
The longest filled common subsequence problem |
| title_fullStr |
The longest filled common subsequence problem |
| title_full_unstemmed |
The longest filled common subsequence problem |
| title_sort |
The longest filled common subsequence problem |
| author |
Castelli, Mauro |
| author_facet |
Castelli, Mauro Dondi, Riccardo Mauri, Giancarlo Zoppis, Italo |
| author_role |
author |
| author2 |
Dondi, Riccardo Mauri, Giancarlo Zoppis, Italo |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
| dc.contributor.author.fl_str_mv |
Castelli, Mauro Dondi, Riccardo Mauri, Giancarlo Zoppis, Italo |
| dc.subject.por.fl_str_mv |
Approximation algorithms Computational complexity Fixed-parameter algorithms Longest common subsequence Software |
| topic |
Approximation algorithms Computational complexity Fixed-parameter algorithms Longest common subsequence Software |
| description |
Castelli, M., Dondi, R., Mauri, G., & Zoppis, I. (2017). The longest filled common subsequence problem. In 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017 (Vol. 78). [14] Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.CPM.2017.14 |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-07-01 2017-07-01T00:00:00Z 2018-01-11T23:28:33Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://doi.org/10.4230/LIPIcs.CPM.2017.14 |
| url |
https://doi.org/10.4230/LIPIcs.CPM.2017.14 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
9783959770392 PURE: 3236258 http://www.scopus.com/inward/record.url?scp=85027276315&partnerID=8YFLogxK https://doi.org/10.4230/LIPIcs.CPM.2017.14 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing |
| publisher.none.fl_str_mv |
Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596370547638272 |