The longest filled common subsequence problem

Detalhes bibliográficos
Autor(a) principal: Castelli, Mauro
Data de Publicação: 2017
Outros Autores: Dondi, Riccardo, Mauri, Giancarlo, Zoppis, Italo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: https://doi.org/10.4230/LIPIcs.CPM.2017.14
Resumo: Castelli, M., Dondi, R., Mauri, G., & Zoppis, I. (2017). The longest filled common subsequence problem. In 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017 (Vol. 78). [14] Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.CPM.2017.14
id RCAP_e0f4d2a5d70ae63d08841a6731e2ee86
oai_identifier_str oai:run.unl.pt:10362/28045
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling The longest filled common subsequence problemApproximation algorithmsComputational complexityFixed-parameter algorithmsLongest common subsequenceSoftwareCastelli, M., Dondi, R., Mauri, G., & Zoppis, I. (2017). The longest filled common subsequence problem. In 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017 (Vol. 78). [14] Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.CPM.2017.14Inspired by a recent approach for genome reconstruction from incomplete data, we consider a variant of the longest common subsequence problem for the comparison of two sequences, one of which is incomplete, i.e. it has some missing elements. The new combinatorial problem, called Longest Filled Common Subsequence, given two sequences A and B, and a multiset M of symbols missing in B, asks for a sequence B∗ obtained by inserting the symbols of M into B so that B∗ induces a common subsequence with A of maximum length. First, we investigate the computational and approximation complexity of the problem and we show that it is NP-hard and APX-hard when A contains at most two occurrences of each symbol. Then, we give a 3/5-approximation algorithm for the problem. Finally, we present a fixed-parameter algorithm, when the problem is parameterized by the number of symbols inserted in B that "match" symbols of A.Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl PublishingNOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNCastelli, MauroDondi, RiccardoMauri, GiancarloZoppis, Italo2018-01-11T23:28:33Z2017-07-012017-07-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://doi.org/10.4230/LIPIcs.CPM.2017.14eng9783959770392PURE: 3236258http://www.scopus.com/inward/record.url?scp=85027276315&partnerID=8YFLogxKhttps://doi.org/10.4230/LIPIcs.CPM.2017.14info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:29:37Zoai:run.unl.pt:10362/28045Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:00:43.965968Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv The longest filled common subsequence problem
title The longest filled common subsequence problem
spellingShingle The longest filled common subsequence problem
Castelli, Mauro
Approximation algorithms
Computational complexity
Fixed-parameter algorithms
Longest common subsequence
Software
title_short The longest filled common subsequence problem
title_full The longest filled common subsequence problem
title_fullStr The longest filled common subsequence problem
title_full_unstemmed The longest filled common subsequence problem
title_sort The longest filled common subsequence problem
author Castelli, Mauro
author_facet Castelli, Mauro
Dondi, Riccardo
Mauri, Giancarlo
Zoppis, Italo
author_role author
author2 Dondi, Riccardo
Mauri, Giancarlo
Zoppis, Italo
author2_role author
author
author
dc.contributor.none.fl_str_mv NOVA Information Management School (NOVA IMS)
Information Management Research Center (MagIC) - NOVA Information Management School
RUN
dc.contributor.author.fl_str_mv Castelli, Mauro
Dondi, Riccardo
Mauri, Giancarlo
Zoppis, Italo
dc.subject.por.fl_str_mv Approximation algorithms
Computational complexity
Fixed-parameter algorithms
Longest common subsequence
Software
topic Approximation algorithms
Computational complexity
Fixed-parameter algorithms
Longest common subsequence
Software
description Castelli, M., Dondi, R., Mauri, G., & Zoppis, I. (2017). The longest filled common subsequence problem. In 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017 (Vol. 78). [14] Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.CPM.2017.14
publishDate 2017
dc.date.none.fl_str_mv 2017-07-01
2017-07-01T00:00:00Z
2018-01-11T23:28:33Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.4230/LIPIcs.CPM.2017.14
url https://doi.org/10.4230/LIPIcs.CPM.2017.14
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 9783959770392
PURE: 3236258
http://www.scopus.com/inward/record.url?scp=85027276315&partnerID=8YFLogxK
https://doi.org/10.4230/LIPIcs.CPM.2017.14
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
publisher.none.fl_str_mv Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596370547638272