Querying and visualisation of semantic data

Bibliographic Details
Main Author: Pereira, Arnaldo António Pinto
Publication Date: 2023
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/41758
Summary: Semantic technologies can describe data, map, and link distributed datasets for people and machines. Over the years, many semantic data repositories have been made available on the web. However, this has created new challenges regarding exploiting these resources efficiently. Usually, querying services use formal query languages requiring knowledge beyond the standard user’s expertise, which is critical in adopting semantic solutions. Several proposals to overcome this difficulty have suggested using question-answering systems that provide user-friendly interfaces allowing natural language inputs. On the other hand, processing and integrating the results in the usual tabular forms does not help to understand the retrieved information better. This thesis proposes solutions and methods to facilitate access and retrieval of information in the context of semantic data repositories. A first contribution concerns the proposal of a strategy for creating and publishing semantic data for different application domains, emphasising biomedical data. A second contribution proposes a new method to access semantic data using natural language as input. Finally, several possibilities for visualising semantic data to facilitate their understanding and exploitation are analysed. The proposals were validated considering use cases in the biomedical domain using data and metadata from patients with Alzheimer’s and patients with Huntington’s disease.
id RCAP_e0b48d6b866527e854f5c98f30a3dd1d
oai_identifier_str oai:ria.ua.pt:10773/41758
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Querying and visualisation of semantic dataSemantic webSemantic dataLinked dataKnowledge basesFAIR dataNatural language interfacesQuestion-answeringData visualisationSemantic technologies can describe data, map, and link distributed datasets for people and machines. Over the years, many semantic data repositories have been made available on the web. However, this has created new challenges regarding exploiting these resources efficiently. Usually, querying services use formal query languages requiring knowledge beyond the standard user’s expertise, which is critical in adopting semantic solutions. Several proposals to overcome this difficulty have suggested using question-answering systems that provide user-friendly interfaces allowing natural language inputs. On the other hand, processing and integrating the results in the usual tabular forms does not help to understand the retrieved information better. This thesis proposes solutions and methods to facilitate access and retrieval of information in the context of semantic data repositories. A first contribution concerns the proposal of a strategy for creating and publishing semantic data for different application domains, emphasising biomedical data. A second contribution proposes a new method to access semantic data using natural language as input. Finally, several possibilities for visualising semantic data to facilitate their understanding and exploitation are analysed. The proposals were validated considering use cases in the biomedical domain using data and metadata from patients with Alzheimer’s and patients with Huntington’s disease.As tecnologias semânticas podem descrever dados, mapear e vincular conjuntos de dados distribuídos para uso por pessoas e máquinas. Ao longo dos anos, muitos repositórios de dados semânticos foram disponibilizados na web. No entanto, isso criou novos desafios no que diz respeito à exploração desses recursos de forma eficiente. Normalmente, os serviços de consulta usam linguagens de consulta formais que exigem conhecimento além da experiência do utilizador padrão, o que é crítico na adoção de soluções semânticas. Várias propostas para superar essa dificuldade vêm sugerindo o uso de sistemas pergunta resposta que fornecem interfaces amigáveis, permitindo entradas em linguagem natural. Por outro lado, processar e integrar os resultados nas formas tabulares usuais não ajuda a entender melhor as informações recuperadas. Esta tese propõe soluções e métodos para facilitar o acesso e recuperação de informação no contexto de repositórios de dados semânticos. Uma primeira contribuição diz respeito à proposta de uma estratégia de criação e publicação de dados semânticos para diferentes domínios de aplicação, com ênfase em dados biomédicos. Uma segunda contribuição propõe um novo método para aceder aos dados semânticos usando linguagem natural como entrada. Por fim, analisam-se várias possibilidades de visualização de dados semânticos para facilitar sua compreensão e exploração. As propostas foram validadas considerando casos de uso no domínio biomédico usando dados e metadados de pacientes com Alzheimer e pacientes com doença de Huntington.2024-04-30T12:39:47Z2023-03-23T00:00:00Z2023-03-23doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10773/41758engPereira, Arnaldo António Pintoinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:57:02Zoai:ria.ua.pt:10773/41758Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:24:24.652245Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Querying and visualisation of semantic data
title Querying and visualisation of semantic data
spellingShingle Querying and visualisation of semantic data
Pereira, Arnaldo António Pinto
Semantic web
Semantic data
Linked data
Knowledge bases
FAIR data
Natural language interfaces
Question-answering
Data visualisation
title_short Querying and visualisation of semantic data
title_full Querying and visualisation of semantic data
title_fullStr Querying and visualisation of semantic data
title_full_unstemmed Querying and visualisation of semantic data
title_sort Querying and visualisation of semantic data
author Pereira, Arnaldo António Pinto
author_facet Pereira, Arnaldo António Pinto
author_role author
dc.contributor.author.fl_str_mv Pereira, Arnaldo António Pinto
dc.subject.por.fl_str_mv Semantic web
Semantic data
Linked data
Knowledge bases
FAIR data
Natural language interfaces
Question-answering
Data visualisation
topic Semantic web
Semantic data
Linked data
Knowledge bases
FAIR data
Natural language interfaces
Question-answering
Data visualisation
description Semantic technologies can describe data, map, and link distributed datasets for people and machines. Over the years, many semantic data repositories have been made available on the web. However, this has created new challenges regarding exploiting these resources efficiently. Usually, querying services use formal query languages requiring knowledge beyond the standard user’s expertise, which is critical in adopting semantic solutions. Several proposals to overcome this difficulty have suggested using question-answering systems that provide user-friendly interfaces allowing natural language inputs. On the other hand, processing and integrating the results in the usual tabular forms does not help to understand the retrieved information better. This thesis proposes solutions and methods to facilitate access and retrieval of information in the context of semantic data repositories. A first contribution concerns the proposal of a strategy for creating and publishing semantic data for different application domains, emphasising biomedical data. A second contribution proposes a new method to access semantic data using natural language as input. Finally, several possibilities for visualising semantic data to facilitate their understanding and exploitation are analysed. The proposals were validated considering use cases in the biomedical domain using data and metadata from patients with Alzheimer’s and patients with Huntington’s disease.
publishDate 2023
dc.date.none.fl_str_mv 2023-03-23T00:00:00Z
2023-03-23
2024-04-30T12:39:47Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/41758
url http://hdl.handle.net/10773/41758
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594569991651328