Segmentation of the bone structure from MRI Knee Joint - A use case
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , , , |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.22/30050 |
Summary: | Manual and automatic segmentation techniques can be applied to DICOM medical images from magnetic resonance imaging (MRI) to extract certain structures, such as soft tissues, but the precise extraction of bone structures may be limited. This study studies these types of knee bone tissue segmentation on MRI, to avoid the need to resort to computed tomography (CT) for obtaining the desired bone structures. Manual segmentation was done using ITK-Snap and automatic segmentation algorithms were applied in Python and the ITK library. As a result of this study, it was found that although manual segmentation allowed for precise and consistent identification of the femur, tibia, fibula, and patella, the automatic segmentation needed to achieve the same level of accuracy. |
id |
RCAP_df95c982b646b1cf4963d2df75df9073 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/30050 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Segmentation of the bone structure from MRI Knee Joint - A use caseMagnetic resonance imaging (MRI)DICOMManual and automatic segmentation techniques can be applied to DICOM medical images from magnetic resonance imaging (MRI) to extract certain structures, such as soft tissues, but the precise extraction of bone structures may be limited. This study studies these types of knee bone tissue segmentation on MRI, to avoid the need to resort to computed tomography (CT) for obtaining the desired bone structures. Manual segmentation was done using ITK-Snap and automatic segmentation algorithms were applied in Python and the ITK library. As a result of this study, it was found that although manual segmentation allowed for precise and consistent identification of the femur, tibia, fibula, and patella, the automatic segmentation needed to achieve the same level of accuracy.Universidade da CoruñaREPOSITÓRIO P.PORTOSilva, VascoVilaça, AdélioVeloso, RitaCoelho, LuísMagalhães, RenatoMagalhães, Renato2025-05-08T16:45:09Z2024-102024-10-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10400.22/30050eng10.17979/spudc.9788497498913.12info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-05-14T01:47:58Zoai:recipp.ipp.pt:10400.22/30050Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T07:14:52.961388Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Segmentation of the bone structure from MRI Knee Joint - A use case |
title |
Segmentation of the bone structure from MRI Knee Joint - A use case |
spellingShingle |
Segmentation of the bone structure from MRI Knee Joint - A use case Silva, Vasco Magnetic resonance imaging (MRI) DICOM |
title_short |
Segmentation of the bone structure from MRI Knee Joint - A use case |
title_full |
Segmentation of the bone structure from MRI Knee Joint - A use case |
title_fullStr |
Segmentation of the bone structure from MRI Knee Joint - A use case |
title_full_unstemmed |
Segmentation of the bone structure from MRI Knee Joint - A use case |
title_sort |
Segmentation of the bone structure from MRI Knee Joint - A use case |
author |
Silva, Vasco |
author_facet |
Silva, Vasco Vilaça, Adélio Veloso, Rita Coelho, Luís Magalhães, Renato |
author_role |
author |
author2 |
Vilaça, Adélio Veloso, Rita Coelho, Luís Magalhães, Renato |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
REPOSITÓRIO P.PORTO |
dc.contributor.author.fl_str_mv |
Silva, Vasco Vilaça, Adélio Veloso, Rita Coelho, Luís Magalhães, Renato Magalhães, Renato |
dc.subject.por.fl_str_mv |
Magnetic resonance imaging (MRI) DICOM |
topic |
Magnetic resonance imaging (MRI) DICOM |
description |
Manual and automatic segmentation techniques can be applied to DICOM medical images from magnetic resonance imaging (MRI) to extract certain structures, such as soft tissues, but the precise extraction of bone structures may be limited. This study studies these types of knee bone tissue segmentation on MRI, to avoid the need to resort to computed tomography (CT) for obtaining the desired bone structures. Manual segmentation was done using ITK-Snap and automatic segmentation algorithms were applied in Python and the ITK library. As a result of this study, it was found that although manual segmentation allowed for precise and consistent identification of the femur, tibia, fibula, and patella, the automatic segmentation needed to achieve the same level of accuracy. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10 2024-10-01T00:00:00Z 2025-05-08T16:45:09Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/30050 |
url |
http://hdl.handle.net/10400.22/30050 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.17979/spudc.9788497498913.12 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade da Coruña |
publisher.none.fl_str_mv |
Universidade da Coruña |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602929543610368 |