Export Ready — 

Lipase-mediated hydrolysis of castor oil on its biotransformation into γ-decalactone by Yarrowia lipolytica

Bibliographic Details
Main Author: Braga, Adelaide
Publication Date: 2011
Other Authors: Gomes, Nelma, Belo, Isabel
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/1822/27455
Summary: γ-Decalactone is a peach-like flavour compound that can be obtained biotechnologically by the biotransformation of ricinoleic acid. Castor oil is the substrate most usually used in the biotechnological production of γ-decalactone and it needs to be hydrolyzed in order to release ricinoleic acid. That biotransformation can be carried out by various microorganisms, such as the non-conventional yeast Yarrowia lipolytica, considered as non-pathogenic and as GRAS by the FDA. In order to increase the availability of the substrate to the cells for the production of γ-decalactone, castor oil previously hydrolyzed can be used. This hydrolysis may be promoted by enzymatic action, more specifically by lipases. The purpose of this work is to study the influence of the lipases-mediated castor oil hydrolysis, in aroma production, using different commercial lipases and a lipase produced by the yeast. Firstly, the enzymatic hydrolysis of castor oil by different commercial lipases (CALB L, Lipozyme TL IM and Lipolase 100T) was studied, under different operating conditions (pH and temperature) and Lipozyme TL IM was the most adequate enzyme to hydrolyze castor oil, at the optimal operating conditions of pH 8 and 27 ˚C (95.4%). Furthermore, different strategies for γ-decalactone production in flask experiments were also investigated, namely the addition of previously hydrolyzed castor oil to the culture medium, the addition of an immobilized lipase to the biotransformation medium and finally, the pre-addition of an inducer of lipase production (olive oil) to the biotransformation medium. As result, the process was faster when lipase was involved in any form, since the maximum of aroma concentration was attained at 140 h and 185 h of batch process with lipase and without lipase addition, respectively. However, no significant improvements in the γ-decalactone global yields and productivities were obtained (productivities varied from 8 ± 1 mg/L h to 9 ± 1 mg /L h in all conditions tested).
id RCAP_df610e483e76bdd40a23c2eaa72d5909
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/27455
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Lipase-mediated hydrolysis of castor oil on its biotransformation into γ-decalactone by Yarrowia lipolyticaγ-Decalactone is a peach-like flavour compound that can be obtained biotechnologically by the biotransformation of ricinoleic acid. Castor oil is the substrate most usually used in the biotechnological production of γ-decalactone and it needs to be hydrolyzed in order to release ricinoleic acid. That biotransformation can be carried out by various microorganisms, such as the non-conventional yeast Yarrowia lipolytica, considered as non-pathogenic and as GRAS by the FDA. In order to increase the availability of the substrate to the cells for the production of γ-decalactone, castor oil previously hydrolyzed can be used. This hydrolysis may be promoted by enzymatic action, more specifically by lipases. The purpose of this work is to study the influence of the lipases-mediated castor oil hydrolysis, in aroma production, using different commercial lipases and a lipase produced by the yeast. Firstly, the enzymatic hydrolysis of castor oil by different commercial lipases (CALB L, Lipozyme TL IM and Lipolase 100T) was studied, under different operating conditions (pH and temperature) and Lipozyme TL IM was the most adequate enzyme to hydrolyze castor oil, at the optimal operating conditions of pH 8 and 27 ˚C (95.4%). Furthermore, different strategies for γ-decalactone production in flask experiments were also investigated, namely the addition of previously hydrolyzed castor oil to the culture medium, the addition of an immobilized lipase to the biotransformation medium and finally, the pre-addition of an inducer of lipase production (olive oil) to the biotransformation medium. As result, the process was faster when lipase was involved in any form, since the maximum of aroma concentration was attained at 140 h and 185 h of batch process with lipase and without lipase addition, respectively. However, no significant improvements in the γ-decalactone global yields and productivities were obtained (productivities varied from 8 ± 1 mg/L h to 9 ± 1 mg /L h in all conditions tested).Universidade do MinhoBraga, AdelaideGomes, NelmaBelo, Isabel20112011-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/27455enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T04:38:01Zoai:repositorium.sdum.uminho.pt:1822/27455Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:53:52.349325Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Lipase-mediated hydrolysis of castor oil on its biotransformation into γ-decalactone by Yarrowia lipolytica
title Lipase-mediated hydrolysis of castor oil on its biotransformation into γ-decalactone by Yarrowia lipolytica
spellingShingle Lipase-mediated hydrolysis of castor oil on its biotransformation into γ-decalactone by Yarrowia lipolytica
Braga, Adelaide
title_short Lipase-mediated hydrolysis of castor oil on its biotransformation into γ-decalactone by Yarrowia lipolytica
title_full Lipase-mediated hydrolysis of castor oil on its biotransformation into γ-decalactone by Yarrowia lipolytica
title_fullStr Lipase-mediated hydrolysis of castor oil on its biotransformation into γ-decalactone by Yarrowia lipolytica
title_full_unstemmed Lipase-mediated hydrolysis of castor oil on its biotransformation into γ-decalactone by Yarrowia lipolytica
title_sort Lipase-mediated hydrolysis of castor oil on its biotransformation into γ-decalactone by Yarrowia lipolytica
author Braga, Adelaide
author_facet Braga, Adelaide
Gomes, Nelma
Belo, Isabel
author_role author
author2 Gomes, Nelma
Belo, Isabel
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Braga, Adelaide
Gomes, Nelma
Belo, Isabel
description γ-Decalactone is a peach-like flavour compound that can be obtained biotechnologically by the biotransformation of ricinoleic acid. Castor oil is the substrate most usually used in the biotechnological production of γ-decalactone and it needs to be hydrolyzed in order to release ricinoleic acid. That biotransformation can be carried out by various microorganisms, such as the non-conventional yeast Yarrowia lipolytica, considered as non-pathogenic and as GRAS by the FDA. In order to increase the availability of the substrate to the cells for the production of γ-decalactone, castor oil previously hydrolyzed can be used. This hydrolysis may be promoted by enzymatic action, more specifically by lipases. The purpose of this work is to study the influence of the lipases-mediated castor oil hydrolysis, in aroma production, using different commercial lipases and a lipase produced by the yeast. Firstly, the enzymatic hydrolysis of castor oil by different commercial lipases (CALB L, Lipozyme TL IM and Lipolase 100T) was studied, under different operating conditions (pH and temperature) and Lipozyme TL IM was the most adequate enzyme to hydrolyze castor oil, at the optimal operating conditions of pH 8 and 27 ˚C (95.4%). Furthermore, different strategies for γ-decalactone production in flask experiments were also investigated, namely the addition of previously hydrolyzed castor oil to the culture medium, the addition of an immobilized lipase to the biotransformation medium and finally, the pre-addition of an inducer of lipase production (olive oil) to the biotransformation medium. As result, the process was faster when lipase was involved in any form, since the maximum of aroma concentration was attained at 140 h and 185 h of batch process with lipase and without lipase addition, respectively. However, no significant improvements in the γ-decalactone global yields and productivities were obtained (productivities varied from 8 ± 1 mg/L h to 9 ± 1 mg /L h in all conditions tested).
publishDate 2011
dc.date.none.fl_str_mv 2011
2011-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/27455
url http://hdl.handle.net/1822/27455
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594962707480576