Enhancement of castor oil biotransformation into aroma by Yarrowia lipolytica mutants
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/1822/28460 |
Resumo: | The food industry has a great interest in biotechnological production of γ- decalactone by Yarrowia lipolytica, due to its increasing consumers acceptability in comparison with similar products obtained by chemical synthesis. This yeast is able to produce γ-decalactone by transformation of a hydroxylated C18 fatty acid. However, lower yields of γ-decalactone were obtained (up to 4–5 gL-1), mainly due the degradation of newly synthesized lactone and the partial use of ricinoleic acid or intermediate at the C10 level, which is simultaneously the precursor for other γ-lactones. Thus, the purpose of this work is to enhance the biotransformation of castor oil, source of ricinoleic acid, into γ-decalactone exploring different operation mode strategies in bioreactor (batch and fed-batch) and compare the yields obtained with wild type strain with those achieved by mutant strains. Different experiments were conducted in a 3.7-L bioreactor using an aeration rate of 5.1 L min-1, agitation 650 rpm and pH 6.0 (previously optimized conditions [1]). The influence of castor oil concentration and cell density on γ-decalactone production was investigated. Two different cell and castor oil concentrations (30 g L-1 and 60 gL-1) were used for the biotransformation. In the expectation of achieving higher γ-decalactone concentrations, a step-wise fed-batch strategy was also attempted. In a first approach, this study was conducted with Yarrowia lipolytica W29 (ATCC20460) and the highest γ-decalactone productivity of 215.4 mg L-1 h-1 was obtained in a batch mode of operation with 60 g L-1 of cells and 60 g L-1 of castor oil. After that, γ-decalactone production with two Yarrowia lipolytica mutants was studied. Experiments performed with Y. Lipolytica MTLY40-2P, with a deletion of all the POX 3–5 genes and a multicopy insertion of POX2 [2], resulted in an increased accumulation and an inhibition of γ-decalactone degradation. Since this yeast is also known to be a lipase producer and these enzymes catalyze the hydrolysis of triacylglycerides into glycerol and free fatty acids, a Y. lipolytica JMY3010 mutant, that overexpress extracellular lipase by the LIP2 gene (encoded the main extracellular lipase activity) cloned under the control of the TEF promoter [3], as also used. With these different approaches is possible to increase aroma productivity and a greater enhance in γ-decalactone production was achieved (up to 7-9 gL-1) through conjugation of a bioprocess optimization and genetic engineering approach. |
id |
RCAP_726d2122cd8b0db3b0e699d088a10fa4 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/28460 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Enhancement of castor oil biotransformation into aroma by Yarrowia lipolytica mutantsThe food industry has a great interest in biotechnological production of γ- decalactone by Yarrowia lipolytica, due to its increasing consumers acceptability in comparison with similar products obtained by chemical synthesis. This yeast is able to produce γ-decalactone by transformation of a hydroxylated C18 fatty acid. However, lower yields of γ-decalactone were obtained (up to 4–5 gL-1), mainly due the degradation of newly synthesized lactone and the partial use of ricinoleic acid or intermediate at the C10 level, which is simultaneously the precursor for other γ-lactones. Thus, the purpose of this work is to enhance the biotransformation of castor oil, source of ricinoleic acid, into γ-decalactone exploring different operation mode strategies in bioreactor (batch and fed-batch) and compare the yields obtained with wild type strain with those achieved by mutant strains. Different experiments were conducted in a 3.7-L bioreactor using an aeration rate of 5.1 L min-1, agitation 650 rpm and pH 6.0 (previously optimized conditions [1]). The influence of castor oil concentration and cell density on γ-decalactone production was investigated. Two different cell and castor oil concentrations (30 g L-1 and 60 gL-1) were used for the biotransformation. In the expectation of achieving higher γ-decalactone concentrations, a step-wise fed-batch strategy was also attempted. In a first approach, this study was conducted with Yarrowia lipolytica W29 (ATCC20460) and the highest γ-decalactone productivity of 215.4 mg L-1 h-1 was obtained in a batch mode of operation with 60 g L-1 of cells and 60 g L-1 of castor oil. After that, γ-decalactone production with two Yarrowia lipolytica mutants was studied. Experiments performed with Y. Lipolytica MTLY40-2P, with a deletion of all the POX 3–5 genes and a multicopy insertion of POX2 [2], resulted in an increased accumulation and an inhibition of γ-decalactone degradation. Since this yeast is also known to be a lipase producer and these enzymes catalyze the hydrolysis of triacylglycerides into glycerol and free fatty acids, a Y. lipolytica JMY3010 mutant, that overexpress extracellular lipase by the LIP2 gene (encoded the main extracellular lipase activity) cloned under the control of the TEF promoter [3], as also used. With these different approaches is possible to increase aroma productivity and a greater enhance in γ-decalactone production was achieved (up to 7-9 gL-1) through conjugation of a bioprocess optimization and genetic engineering approach.Universidade do MinhoBraga, AdelaideBelo, Isabel2013-07-062013-07-06T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/28460enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:15:01Zoai:repositorium.sdum.uminho.pt:1822/28460Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:46:15.237234Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Enhancement of castor oil biotransformation into aroma by Yarrowia lipolytica mutants |
title |
Enhancement of castor oil biotransformation into aroma by Yarrowia lipolytica mutants |
spellingShingle |
Enhancement of castor oil biotransformation into aroma by Yarrowia lipolytica mutants Braga, Adelaide |
title_short |
Enhancement of castor oil biotransformation into aroma by Yarrowia lipolytica mutants |
title_full |
Enhancement of castor oil biotransformation into aroma by Yarrowia lipolytica mutants |
title_fullStr |
Enhancement of castor oil biotransformation into aroma by Yarrowia lipolytica mutants |
title_full_unstemmed |
Enhancement of castor oil biotransformation into aroma by Yarrowia lipolytica mutants |
title_sort |
Enhancement of castor oil biotransformation into aroma by Yarrowia lipolytica mutants |
author |
Braga, Adelaide |
author_facet |
Braga, Adelaide Belo, Isabel |
author_role |
author |
author2 |
Belo, Isabel |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Braga, Adelaide Belo, Isabel |
description |
The food industry has a great interest in biotechnological production of γ- decalactone by Yarrowia lipolytica, due to its increasing consumers acceptability in comparison with similar products obtained by chemical synthesis. This yeast is able to produce γ-decalactone by transformation of a hydroxylated C18 fatty acid. However, lower yields of γ-decalactone were obtained (up to 4–5 gL-1), mainly due the degradation of newly synthesized lactone and the partial use of ricinoleic acid or intermediate at the C10 level, which is simultaneously the precursor for other γ-lactones. Thus, the purpose of this work is to enhance the biotransformation of castor oil, source of ricinoleic acid, into γ-decalactone exploring different operation mode strategies in bioreactor (batch and fed-batch) and compare the yields obtained with wild type strain with those achieved by mutant strains. Different experiments were conducted in a 3.7-L bioreactor using an aeration rate of 5.1 L min-1, agitation 650 rpm and pH 6.0 (previously optimized conditions [1]). The influence of castor oil concentration and cell density on γ-decalactone production was investigated. Two different cell and castor oil concentrations (30 g L-1 and 60 gL-1) were used for the biotransformation. In the expectation of achieving higher γ-decalactone concentrations, a step-wise fed-batch strategy was also attempted. In a first approach, this study was conducted with Yarrowia lipolytica W29 (ATCC20460) and the highest γ-decalactone productivity of 215.4 mg L-1 h-1 was obtained in a batch mode of operation with 60 g L-1 of cells and 60 g L-1 of castor oil. After that, γ-decalactone production with two Yarrowia lipolytica mutants was studied. Experiments performed with Y. Lipolytica MTLY40-2P, with a deletion of all the POX 3–5 genes and a multicopy insertion of POX2 [2], resulted in an increased accumulation and an inhibition of γ-decalactone degradation. Since this yeast is also known to be a lipase producer and these enzymes catalyze the hydrolysis of triacylglycerides into glycerol and free fatty acids, a Y. lipolytica JMY3010 mutant, that overexpress extracellular lipase by the LIP2 gene (encoded the main extracellular lipase activity) cloned under the control of the TEF promoter [3], as also used. With these different approaches is possible to increase aroma productivity and a greater enhance in γ-decalactone production was achieved (up to 7-9 gL-1) through conjugation of a bioprocess optimization and genetic engineering approach. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-07-06 2013-07-06T00:00:00Z |
dc.type.driver.fl_str_mv |
conference object |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/28460 |
url |
http://hdl.handle.net/1822/28460 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595529792061440 |