A Model for Planning TELCO Work-Field Activities Enabled by Genetic and Ant Colony Algorithms
Main Author: | |
---|---|
Publication Date: | 2022 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10400.19/7412 |
Summary: | Telecommunication Company’s (TELCO) are continuously delivering their efforts on the effectiveness of their daily work. Planning the activities for their workers is a crucial sensitive, and time-consuming task usually taken by experts. This plan aims to find an optimized solution maximizing the number of activities assigned to workers and minimizing the inherent costs (e.g., labor from workers, fuel, and other transportation costs). This paper proposes a model that allows computing a maximized plan for the activities assigned to their workers, allowing to alleviate the burden of the existing experts, even if supported by software implementing rule-based heuristic models. The proposed model is inspired by nature and relies on two stages supported by Genetic and Ant Colony evolutionary algorithms. At the first stage, a Genetic Algorithms (GA) identifies the optimal set of activities to be assigned to workers as the way to maximize the revenues. At a second step, an Ant Colony algorithm searches for an efficient path among the activities to minimize the costs. The conducted experimental work validates the effectiveness of the proposed model in the optimization of the planning TELCO work-field activities in comparison to a rule-based heuristic model. |
id |
RCAP_df53b17937e697621c8f5a18018dc014 |
---|---|
oai_identifier_str |
oai:repositorio.ipv.pt:10400.19/7412 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
A Model for Planning TELCO Work-Field Activities Enabled by Genetic and Ant Colony AlgorithmsAnt ColonyGenetic AlgorithmsRoute OptimizationTELCOTelecommunication Company’s (TELCO) are continuously delivering their efforts on the effectiveness of their daily work. Planning the activities for their workers is a crucial sensitive, and time-consuming task usually taken by experts. This plan aims to find an optimized solution maximizing the number of activities assigned to workers and minimizing the inherent costs (e.g., labor from workers, fuel, and other transportation costs). This paper proposes a model that allows computing a maximized plan for the activities assigned to their workers, allowing to alleviate the burden of the existing experts, even if supported by software implementing rule-based heuristic models. The proposed model is inspired by nature and relies on two stages supported by Genetic and Ant Colony evolutionary algorithms. At the first stage, a Genetic Algorithms (GA) identifies the optimal set of activities to be assigned to workers as the way to maximize the revenues. At a second step, an Ant Colony algorithm searches for an efficient path among the activities to minimize the costs. The conducted experimental work validates the effectiveness of the proposed model in the optimization of the planning TELCO work-field activities in comparison to a rule-based heuristic model.Instituto Politécnico de ViseuHenriques, J.Caldeira, Filipe2022-11-18T11:54:54Z20222022-11-15T18:40:52Z2022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.19/7412eng1989166010.9781/ijimai.2022.08.011info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-06T13:53:54Zoai:repositorio.ipv.pt:10400.19/7412Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:08:40.395519Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
A Model for Planning TELCO Work-Field Activities Enabled by Genetic and Ant Colony Algorithms |
title |
A Model for Planning TELCO Work-Field Activities Enabled by Genetic and Ant Colony Algorithms |
spellingShingle |
A Model for Planning TELCO Work-Field Activities Enabled by Genetic and Ant Colony Algorithms Henriques, J. Ant Colony Genetic Algorithms Route Optimization TELCO |
title_short |
A Model for Planning TELCO Work-Field Activities Enabled by Genetic and Ant Colony Algorithms |
title_full |
A Model for Planning TELCO Work-Field Activities Enabled by Genetic and Ant Colony Algorithms |
title_fullStr |
A Model for Planning TELCO Work-Field Activities Enabled by Genetic and Ant Colony Algorithms |
title_full_unstemmed |
A Model for Planning TELCO Work-Field Activities Enabled by Genetic and Ant Colony Algorithms |
title_sort |
A Model for Planning TELCO Work-Field Activities Enabled by Genetic and Ant Colony Algorithms |
author |
Henriques, J. |
author_facet |
Henriques, J. Caldeira, Filipe |
author_role |
author |
author2 |
Caldeira, Filipe |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Instituto Politécnico de Viseu |
dc.contributor.author.fl_str_mv |
Henriques, J. Caldeira, Filipe |
dc.subject.por.fl_str_mv |
Ant Colony Genetic Algorithms Route Optimization TELCO |
topic |
Ant Colony Genetic Algorithms Route Optimization TELCO |
description |
Telecommunication Company’s (TELCO) are continuously delivering their efforts on the effectiveness of their daily work. Planning the activities for their workers is a crucial sensitive, and time-consuming task usually taken by experts. This plan aims to find an optimized solution maximizing the number of activities assigned to workers and minimizing the inherent costs (e.g., labor from workers, fuel, and other transportation costs). This paper proposes a model that allows computing a maximized plan for the activities assigned to their workers, allowing to alleviate the burden of the existing experts, even if supported by software implementing rule-based heuristic models. The proposed model is inspired by nature and relies on two stages supported by Genetic and Ant Colony evolutionary algorithms. At the first stage, a Genetic Algorithms (GA) identifies the optimal set of activities to be assigned to workers as the way to maximize the revenues. At a second step, an Ant Colony algorithm searches for an efficient path among the activities to minimize the costs. The conducted experimental work validates the effectiveness of the proposed model in the optimization of the planning TELCO work-field activities in comparison to a rule-based heuristic model. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-18T11:54:54Z 2022 2022-11-15T18:40:52Z 2022-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.19/7412 |
url |
http://hdl.handle.net/10400.19/7412 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
19891660 10.9781/ijimai.2022.08.011 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833600414528831488 |