Weighted generalized fractional integration by parts and the Euler-Lagrange equation

Detalhes bibliográficos
Autor(a) principal: Zine, Houssine
Data de Publicação: 2022
Outros Autores: Lotfi, El Mehdi, Torres, Delfim F. M., Yousfi, Noura
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10773/34273
Resumo: Integration by parts plays a crucial role in mathematical analysis, e.g., during the proof of necessary optimality conditions in the calculus of variations and optimal control. Motivated by this fact, we construct a new, right-weighted generalized fractional derivative in the Riemann–Liouville sense with its associated integral for the recently introduced weighted generalized fractional derivative with Mittag–Leffler kernel. We rewrite these operators equivalently in effective series, proving some interesting properties relating to the left and the right fractional operators. These results permit us to obtain the corresponding integration by parts formula. With the new general formula, we obtain an appropriate weighted Euler–Lagrange equation for dynamic optimization, extending those existing in the literature. We end with the application of an optimization variational problem to the quantum mechanics framework.
id RCAP_df5100e2124c77ffcd62390b84cb253c
oai_identifier_str oai:ria.ua.pt:10773/34273
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Weighted generalized fractional integration by parts and the Euler-Lagrange equationWeighted generalized fractional calculusIntegration by parts formulaEuler–Lagrange equationQuantum mechanicsCalculus of variationsIntegration by parts plays a crucial role in mathematical analysis, e.g., during the proof of necessary optimality conditions in the calculus of variations and optimal control. Motivated by this fact, we construct a new, right-weighted generalized fractional derivative in the Riemann–Liouville sense with its associated integral for the recently introduced weighted generalized fractional derivative with Mittag–Leffler kernel. We rewrite these operators equivalently in effective series, proving some interesting properties relating to the left and the right fractional operators. These results permit us to obtain the corresponding integration by parts formula. With the new general formula, we obtain an appropriate weighted Euler–Lagrange equation for dynamic optimization, extending those existing in the literature. We end with the application of an optimization variational problem to the quantum mechanics framework.MDPI2022-07-25T14:28:07Z2022-04-15T00:00:00Z2022-04-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/34273eng10.3390/axioms11040178Zine, HoussineLotfi, El MehdiTorres, Delfim F. M.Yousfi, Nourainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:37:03Zoai:ria.ua.pt:10773/34273Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:14:24.877075Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Weighted generalized fractional integration by parts and the Euler-Lagrange equation
title Weighted generalized fractional integration by parts and the Euler-Lagrange equation
spellingShingle Weighted generalized fractional integration by parts and the Euler-Lagrange equation
Zine, Houssine
Weighted generalized fractional calculus
Integration by parts formula
Euler–Lagrange equation
Quantum mechanics
Calculus of variations
title_short Weighted generalized fractional integration by parts and the Euler-Lagrange equation
title_full Weighted generalized fractional integration by parts and the Euler-Lagrange equation
title_fullStr Weighted generalized fractional integration by parts and the Euler-Lagrange equation
title_full_unstemmed Weighted generalized fractional integration by parts and the Euler-Lagrange equation
title_sort Weighted generalized fractional integration by parts and the Euler-Lagrange equation
author Zine, Houssine
author_facet Zine, Houssine
Lotfi, El Mehdi
Torres, Delfim F. M.
Yousfi, Noura
author_role author
author2 Lotfi, El Mehdi
Torres, Delfim F. M.
Yousfi, Noura
author2_role author
author
author
dc.contributor.author.fl_str_mv Zine, Houssine
Lotfi, El Mehdi
Torres, Delfim F. M.
Yousfi, Noura
dc.subject.por.fl_str_mv Weighted generalized fractional calculus
Integration by parts formula
Euler–Lagrange equation
Quantum mechanics
Calculus of variations
topic Weighted generalized fractional calculus
Integration by parts formula
Euler–Lagrange equation
Quantum mechanics
Calculus of variations
description Integration by parts plays a crucial role in mathematical analysis, e.g., during the proof of necessary optimality conditions in the calculus of variations and optimal control. Motivated by this fact, we construct a new, right-weighted generalized fractional derivative in the Riemann–Liouville sense with its associated integral for the recently introduced weighted generalized fractional derivative with Mittag–Leffler kernel. We rewrite these operators equivalently in effective series, proving some interesting properties relating to the left and the right fractional operators. These results permit us to obtain the corresponding integration by parts formula. With the new general formula, we obtain an appropriate weighted Euler–Lagrange equation for dynamic optimization, extending those existing in the literature. We end with the application of an optimization variational problem to the quantum mechanics framework.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-25T14:28:07Z
2022-04-15T00:00:00Z
2022-04-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/34273
url http://hdl.handle.net/10773/34273
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.3390/axioms11040178
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594429659676672