Emotionally-Relevant Features for Classification and Regression of Music Lyrics
Main Author: | |
---|---|
Publication Date: | 2018 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/10316/94353 https://doi.org/10.1109/TAFFC.2016.2598569 |
Summary: | This research addresses the role of lyrics in the music emotion recognition process. Our approach is based on several state of the art features complemented by novel stylistic, structural and semantic features. To evaluate our approach, we created a ground truth dataset containing 180 song lyrics, according to Russell’s emotion model. We conduct four types of experiments: regression and classification by quadrant, arousal and valence categories. Comparing to the state of the art features (ngrams - baseline), adding other features, including novel features, improved the F-measure from 69.9%, 82.7% and 85.6% to 80.1%, 88.3% and 90%, respectively for the three classification experiments. To study the relation between features and emotions (quadrants) we performed experiments to identify the best features that allow to describe and discriminate each quadrant. To further validate these experiments, we built a validation set comprising 771 lyrics extracted from the AllMusic platform, having achieved 73.6% F-measure in the classification by quadrants. We also conducted experiments to identify interpretable rules that show the relation between features and emotions and the relation among features. Regarding regression, results show that, comparing to similar studies for audio, we achieve a similar performance for arousal and a much better performance for valence. |
id |
RCAP_dee6ff1e39a0a75aaf1715d908516523 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/94353 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Emotionally-Relevant Features for Classification and Regression of Music Lyricslyrics feature extractionlyrics musiclyrics music classificationlyrics music emotion recognitionmusic information retrievalThis research addresses the role of lyrics in the music emotion recognition process. Our approach is based on several state of the art features complemented by novel stylistic, structural and semantic features. To evaluate our approach, we created a ground truth dataset containing 180 song lyrics, according to Russell’s emotion model. We conduct four types of experiments: regression and classification by quadrant, arousal and valence categories. Comparing to the state of the art features (ngrams - baseline), adding other features, including novel features, improved the F-measure from 69.9%, 82.7% and 85.6% to 80.1%, 88.3% and 90%, respectively for the three classification experiments. To study the relation between features and emotions (quadrants) we performed experiments to identify the best features that allow to describe and discriminate each quadrant. To further validate these experiments, we built a validation set comprising 771 lyrics extracted from the AllMusic platform, having achieved 73.6% F-measure in the classification by quadrants. We also conducted experiments to identify interpretable rules that show the relation between features and emotions and the relation among features. Regarding regression, results show that, comparing to similar studies for audio, we achieve a similar performance for arousal and a much better performance for valence.IEEE2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttps://hdl.handle.net/10316/94353https://hdl.handle.net/10316/94353https://doi.org/10.1109/TAFFC.2016.2598569eng1949-3045http://ieeexplore.ieee.org/document/7536113/Malheiro, RicardoPanda, Renato Eduardo SilvaGomes, PauloPaiva, Rui Pedro Pinto de Carvalho einfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2021-05-25T07:40:03Zoai:estudogeral.uc.pt:10316/94353Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:42:15.392632Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Emotionally-Relevant Features for Classification and Regression of Music Lyrics |
title |
Emotionally-Relevant Features for Classification and Regression of Music Lyrics |
spellingShingle |
Emotionally-Relevant Features for Classification and Regression of Music Lyrics Malheiro, Ricardo lyrics feature extraction lyrics music lyrics music classification lyrics music emotion recognition music information retrieval |
title_short |
Emotionally-Relevant Features for Classification and Regression of Music Lyrics |
title_full |
Emotionally-Relevant Features for Classification and Regression of Music Lyrics |
title_fullStr |
Emotionally-Relevant Features for Classification and Regression of Music Lyrics |
title_full_unstemmed |
Emotionally-Relevant Features for Classification and Regression of Music Lyrics |
title_sort |
Emotionally-Relevant Features for Classification and Regression of Music Lyrics |
author |
Malheiro, Ricardo |
author_facet |
Malheiro, Ricardo Panda, Renato Eduardo Silva Gomes, Paulo Paiva, Rui Pedro Pinto de Carvalho e |
author_role |
author |
author2 |
Panda, Renato Eduardo Silva Gomes, Paulo Paiva, Rui Pedro Pinto de Carvalho e |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Malheiro, Ricardo Panda, Renato Eduardo Silva Gomes, Paulo Paiva, Rui Pedro Pinto de Carvalho e |
dc.subject.por.fl_str_mv |
lyrics feature extraction lyrics music lyrics music classification lyrics music emotion recognition music information retrieval |
topic |
lyrics feature extraction lyrics music lyrics music classification lyrics music emotion recognition music information retrieval |
description |
This research addresses the role of lyrics in the music emotion recognition process. Our approach is based on several state of the art features complemented by novel stylistic, structural and semantic features. To evaluate our approach, we created a ground truth dataset containing 180 song lyrics, according to Russell’s emotion model. We conduct four types of experiments: regression and classification by quadrant, arousal and valence categories. Comparing to the state of the art features (ngrams - baseline), adding other features, including novel features, improved the F-measure from 69.9%, 82.7% and 85.6% to 80.1%, 88.3% and 90%, respectively for the three classification experiments. To study the relation between features and emotions (quadrants) we performed experiments to identify the best features that allow to describe and discriminate each quadrant. To further validate these experiments, we built a validation set comprising 771 lyrics extracted from the AllMusic platform, having achieved 73.6% F-measure in the classification by quadrants. We also conducted experiments to identify interpretable rules that show the relation between features and emotions and the relation among features. Regarding regression, results show that, comparing to similar studies for audio, we achieve a similar performance for arousal and a much better performance for valence. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10316/94353 https://hdl.handle.net/10316/94353 https://doi.org/10.1109/TAFFC.2016.2598569 |
url |
https://hdl.handle.net/10316/94353 https://doi.org/10.1109/TAFFC.2016.2598569 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1949-3045 http://ieeexplore.ieee.org/document/7536113/ |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602444363300864 |