Non-invasive wearable sensing system for sleep disorder monitoring

Detalhes bibliográficos
Autor(a) principal: Alberto, Mauro Cruz
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.1/10121
Resumo: This Master Thesis introduced a proposal of a remote sensory system for the detection of sleep disorders in geriatric outpatients. Although the most accurate solution would be an in-depth study in a sleep clinic, it is not a realistic environment for the elderly. The objective is that the patient stays at home, and without changing their daily routines, the clinicians get objective information in order to make a correct diagnosis of the sleep disorders. Sleep disorders are often classified as medical disorders corresponding to modifications on the sleep patterns and the amount of these modifications increase with age. However, regularly, these illnesses are undiagnosed, since is hard for the patients to explain the symptoms to the doctor. To achieve the proposed objective, we studied the polysomnography bio-signals that could be used to accurate reflect the sleep disorders occurrences. We designed a Body Sensor Network (BSN) to be divided into both movement assessment (Accelerometer and Gyroscope) and biomedical signals (EMG, ECG, PPG, GSR) evaluation. These signals, reflecting both breathing and cardiac activities, are processed by a specifically developed algorithm. The reduction of the number of sensors was also envisaged, and it was decided to use 3 biomedical sensors instead of the minimum of 22 sensors used by polysomnography. Thus, to offer better visualization of the recorded signals a software interface was developed to include the processing and visualization of the signals. To identify the sleep stage and apnea state, we settled an algorithm that processes both ECG and EMG. To validate this algorithm, it was decided to use two sources of data: PhysioNet data base containing ECG and EMG signals and data recorded by our BSN on volunteers. With this work, we were able to build a BSN capable of detecting a set of sleep disorders, without using any invasive method. The network provides reliable data, and using the developed interface, it helps elderly health providers to carry out an in-depth analysis of the information and to better identify sleep disorders.
id RCAP_dca365aa9b5f07eec7db93cda0140f8f
oai_identifier_str oai:sapientia.ualg.pt:10400.1/10121
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Non-invasive wearable sensing system for sleep disorder monitoringDistúrbios de sonoApneiaMonitoramento remoto da saúdeThis Master Thesis introduced a proposal of a remote sensory system for the detection of sleep disorders in geriatric outpatients. Although the most accurate solution would be an in-depth study in a sleep clinic, it is not a realistic environment for the elderly. The objective is that the patient stays at home, and without changing their daily routines, the clinicians get objective information in order to make a correct diagnosis of the sleep disorders. Sleep disorders are often classified as medical disorders corresponding to modifications on the sleep patterns and the amount of these modifications increase with age. However, regularly, these illnesses are undiagnosed, since is hard for the patients to explain the symptoms to the doctor. To achieve the proposed objective, we studied the polysomnography bio-signals that could be used to accurate reflect the sleep disorders occurrences. We designed a Body Sensor Network (BSN) to be divided into both movement assessment (Accelerometer and Gyroscope) and biomedical signals (EMG, ECG, PPG, GSR) evaluation. These signals, reflecting both breathing and cardiac activities, are processed by a specifically developed algorithm. The reduction of the number of sensors was also envisaged, and it was decided to use 3 biomedical sensors instead of the minimum of 22 sensors used by polysomnography. Thus, to offer better visualization of the recorded signals a software interface was developed to include the processing and visualization of the signals. To identify the sleep stage and apnea state, we settled an algorithm that processes both ECG and EMG. To validate this algorithm, it was decided to use two sources of data: PhysioNet data base containing ECG and EMG signals and data recorded by our BSN on volunteers. With this work, we were able to build a BSN capable of detecting a set of sleep disorders, without using any invasive method. The network provides reliable data, and using the developed interface, it helps elderly health providers to carry out an in-depth analysis of the information and to better identify sleep disorders.Ruano, M. GraçaSapientiaAlberto, Mauro Cruz2017-10-23T09:22:37Z2017-07-3120172017-07-31T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.1/10121urn:tid:201740265enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-18T17:30:20Zoai:sapientia.ualg.pt:10400.1/10121Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T20:24:39.340373Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Non-invasive wearable sensing system for sleep disorder monitoring
title Non-invasive wearable sensing system for sleep disorder monitoring
spellingShingle Non-invasive wearable sensing system for sleep disorder monitoring
Alberto, Mauro Cruz
Distúrbios de sono
Apneia
Monitoramento remoto da saúde
title_short Non-invasive wearable sensing system for sleep disorder monitoring
title_full Non-invasive wearable sensing system for sleep disorder monitoring
title_fullStr Non-invasive wearable sensing system for sleep disorder monitoring
title_full_unstemmed Non-invasive wearable sensing system for sleep disorder monitoring
title_sort Non-invasive wearable sensing system for sleep disorder monitoring
author Alberto, Mauro Cruz
author_facet Alberto, Mauro Cruz
author_role author
dc.contributor.none.fl_str_mv Ruano, M. Graça
Sapientia
dc.contributor.author.fl_str_mv Alberto, Mauro Cruz
dc.subject.por.fl_str_mv Distúrbios de sono
Apneia
Monitoramento remoto da saúde
topic Distúrbios de sono
Apneia
Monitoramento remoto da saúde
description This Master Thesis introduced a proposal of a remote sensory system for the detection of sleep disorders in geriatric outpatients. Although the most accurate solution would be an in-depth study in a sleep clinic, it is not a realistic environment for the elderly. The objective is that the patient stays at home, and without changing their daily routines, the clinicians get objective information in order to make a correct diagnosis of the sleep disorders. Sleep disorders are often classified as medical disorders corresponding to modifications on the sleep patterns and the amount of these modifications increase with age. However, regularly, these illnesses are undiagnosed, since is hard for the patients to explain the symptoms to the doctor. To achieve the proposed objective, we studied the polysomnography bio-signals that could be used to accurate reflect the sleep disorders occurrences. We designed a Body Sensor Network (BSN) to be divided into both movement assessment (Accelerometer and Gyroscope) and biomedical signals (EMG, ECG, PPG, GSR) evaluation. These signals, reflecting both breathing and cardiac activities, are processed by a specifically developed algorithm. The reduction of the number of sensors was also envisaged, and it was decided to use 3 biomedical sensors instead of the minimum of 22 sensors used by polysomnography. Thus, to offer better visualization of the recorded signals a software interface was developed to include the processing and visualization of the signals. To identify the sleep stage and apnea state, we settled an algorithm that processes both ECG and EMG. To validate this algorithm, it was decided to use two sources of data: PhysioNet data base containing ECG and EMG signals and data recorded by our BSN on volunteers. With this work, we were able to build a BSN capable of detecting a set of sleep disorders, without using any invasive method. The network provides reliable data, and using the developed interface, it helps elderly health providers to carry out an in-depth analysis of the information and to better identify sleep disorders.
publishDate 2017
dc.date.none.fl_str_mv 2017-10-23T09:22:37Z
2017-07-31
2017
2017-07-31T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/10121
urn:tid:201740265
url http://hdl.handle.net/10400.1/10121
identifier_str_mv urn:tid:201740265
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833598645715337216