Predicting resurgery in intensive care - a data mining approach

Bibliographic Details
Main Author: Peixoto, Ricardo
Publication Date: 2017
Other Authors: Ribeiro, Lisete, Portela, Filipe, Santos, Manuel, Rua, Fernando
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/1822/67830
Summary: Every day the surgical interventions are associated with medicine, and the area of critical care medicine is no exception. The goal of this work is to assist health professionals in predicting these interventions. Thus, when the Data Mining techniques are well applied it is possible, with the help of medical knowledge, to predict whether a particular patient should or not should be re-operated upon the same problem. In this study, some aspects, such as heart disease and age, and some data classes were built to improve the models created. In addition, several scenarios were created, with the objective can predict the resurgery patients. According the primary objective, the resurgery patients prediction, the metric used was the sensitivity, obtaining an approximate result of 90%.
id RCAP_dc06c598135340e1734b3cdd07f821a8
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/67830
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Predicting resurgery in intensive care - a data mining approachData MiningClassificationInterventionsReinterventionsINTCareCiências Naturais::Ciências da Computação e da InformaçãoEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaScience & TechnologyEvery day the surgical interventions are associated with medicine, and the area of critical care medicine is no exception. The goal of this work is to assist health professionals in predicting these interventions. Thus, when the Data Mining techniques are well applied it is possible, with the help of medical knowledge, to predict whether a particular patient should or not should be re-operated upon the same problem. In this study, some aspects, such as heart disease and age, and some data classes were built to improve the models created. In addition, several scenarios were created, with the objective can predict the resurgery patients. According the primary objective, the resurgery patients prediction, the metric used was the sensitivity, obtaining an approximate result of 90%.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundacao para a Ciencia e Tecnologia within the Project Scope: UID/CEC/00319/2013." This work is also supported by the Deus ex Machina (DEM): Symbiotic technology for societal efficiency gains - NORTE-01-0145-FEDER-000026Elsevier Science BVUniversidade do MinhoPeixoto, RicardoRibeiro, LisetePortela, FilipeSantos, ManuelRua, Fernando20172017-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/67830eng1877-050910.1016/j.procs.2017.08.291https://www.sciencedirect.com/science/article/pii/S1877050917317003info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-12T05:05:27Zoai:repositorium.sdum.uminho.pt:1822/67830Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:02:18.575521Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Predicting resurgery in intensive care - a data mining approach
title Predicting resurgery in intensive care - a data mining approach
spellingShingle Predicting resurgery in intensive care - a data mining approach
Peixoto, Ricardo
Data Mining
Classification
Interventions
Reinterventions
INTCare
Ciências Naturais::Ciências da Computação e da Informação
Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
Science & Technology
title_short Predicting resurgery in intensive care - a data mining approach
title_full Predicting resurgery in intensive care - a data mining approach
title_fullStr Predicting resurgery in intensive care - a data mining approach
title_full_unstemmed Predicting resurgery in intensive care - a data mining approach
title_sort Predicting resurgery in intensive care - a data mining approach
author Peixoto, Ricardo
author_facet Peixoto, Ricardo
Ribeiro, Lisete
Portela, Filipe
Santos, Manuel
Rua, Fernando
author_role author
author2 Ribeiro, Lisete
Portela, Filipe
Santos, Manuel
Rua, Fernando
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Peixoto, Ricardo
Ribeiro, Lisete
Portela, Filipe
Santos, Manuel
Rua, Fernando
dc.subject.por.fl_str_mv Data Mining
Classification
Interventions
Reinterventions
INTCare
Ciências Naturais::Ciências da Computação e da Informação
Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
Science & Technology
topic Data Mining
Classification
Interventions
Reinterventions
INTCare
Ciências Naturais::Ciências da Computação e da Informação
Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
Science & Technology
description Every day the surgical interventions are associated with medicine, and the area of critical care medicine is no exception. The goal of this work is to assist health professionals in predicting these interventions. Thus, when the Data Mining techniques are well applied it is possible, with the help of medical knowledge, to predict whether a particular patient should or not should be re-operated upon the same problem. In this study, some aspects, such as heart disease and age, and some data classes were built to improve the models created. In addition, several scenarios were created, with the objective can predict the resurgery patients. According the primary objective, the resurgery patients prediction, the metric used was the sensitivity, obtaining an approximate result of 90%.
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference paper
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/67830
url https://hdl.handle.net/1822/67830
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1877-0509
10.1016/j.procs.2017.08.291
https://www.sciencedirect.com/science/article/pii/S1877050917317003
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier Science BV
publisher.none.fl_str_mv Elsevier Science BV
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595697094459392