Predicting resurgery in intensive care - a data mining approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | https://hdl.handle.net/1822/67830 |
Resumo: | Every day the surgical interventions are associated with medicine, and the area of critical care medicine is no exception. The goal of this work is to assist health professionals in predicting these interventions. Thus, when the Data Mining techniques are well applied it is possible, with the help of medical knowledge, to predict whether a particular patient should or not should be re-operated upon the same problem. In this study, some aspects, such as heart disease and age, and some data classes were built to improve the models created. In addition, several scenarios were created, with the objective can predict the resurgery patients. According the primary objective, the resurgery patients prediction, the metric used was the sensitivity, obtaining an approximate result of 90%. |
id |
RCAP_dc06c598135340e1734b3cdd07f821a8 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/67830 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Predicting resurgery in intensive care - a data mining approachData MiningClassificationInterventionsReinterventionsINTCareCiências Naturais::Ciências da Computação e da InformaçãoEngenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaScience & TechnologyEvery day the surgical interventions are associated with medicine, and the area of critical care medicine is no exception. The goal of this work is to assist health professionals in predicting these interventions. Thus, when the Data Mining techniques are well applied it is possible, with the help of medical knowledge, to predict whether a particular patient should or not should be re-operated upon the same problem. In this study, some aspects, such as heart disease and age, and some data classes were built to improve the models created. In addition, several scenarios were created, with the objective can predict the resurgery patients. According the primary objective, the resurgery patients prediction, the metric used was the sensitivity, obtaining an approximate result of 90%.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Fundacao para a Ciencia e Tecnologia within the Project Scope: UID/CEC/00319/2013." This work is also supported by the Deus ex Machina (DEM): Symbiotic technology for societal efficiency gains - NORTE-01-0145-FEDER-000026Elsevier Science BVUniversidade do MinhoPeixoto, RicardoRibeiro, LisetePortela, FilipeSantos, ManuelRua, Fernando20172017-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/67830eng1877-050910.1016/j.procs.2017.08.291https://www.sciencedirect.com/science/article/pii/S1877050917317003info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-04-12T05:05:27Zoai:repositorium.sdum.uminho.pt:1822/67830Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T16:02:18.575521Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Predicting resurgery in intensive care - a data mining approach |
title |
Predicting resurgery in intensive care - a data mining approach |
spellingShingle |
Predicting resurgery in intensive care - a data mining approach Peixoto, Ricardo Data Mining Classification Interventions Reinterventions INTCare Ciências Naturais::Ciências da Computação e da Informação Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática Science & Technology |
title_short |
Predicting resurgery in intensive care - a data mining approach |
title_full |
Predicting resurgery in intensive care - a data mining approach |
title_fullStr |
Predicting resurgery in intensive care - a data mining approach |
title_full_unstemmed |
Predicting resurgery in intensive care - a data mining approach |
title_sort |
Predicting resurgery in intensive care - a data mining approach |
author |
Peixoto, Ricardo |
author_facet |
Peixoto, Ricardo Ribeiro, Lisete Portela, Filipe Santos, Manuel Rua, Fernando |
author_role |
author |
author2 |
Ribeiro, Lisete Portela, Filipe Santos, Manuel Rua, Fernando |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Peixoto, Ricardo Ribeiro, Lisete Portela, Filipe Santos, Manuel Rua, Fernando |
dc.subject.por.fl_str_mv |
Data Mining Classification Interventions Reinterventions INTCare Ciências Naturais::Ciências da Computação e da Informação Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática Science & Technology |
topic |
Data Mining Classification Interventions Reinterventions INTCare Ciências Naturais::Ciências da Computação e da Informação Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática Science & Technology |
description |
Every day the surgical interventions are associated with medicine, and the area of critical care medicine is no exception. The goal of this work is to assist health professionals in predicting these interventions. Thus, when the Data Mining techniques are well applied it is possible, with the help of medical knowledge, to predict whether a particular patient should or not should be re-operated upon the same problem. In this study, some aspects, such as heart disease and age, and some data classes were built to improve the models created. In addition, several scenarios were created, with the objective can predict the resurgery patients. According the primary objective, the resurgery patients prediction, the metric used was the sensitivity, obtaining an approximate result of 90%. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2017-01-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/67830 |
url |
https://hdl.handle.net/1822/67830 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1877-0509 10.1016/j.procs.2017.08.291 https://www.sciencedirect.com/science/article/pii/S1877050917317003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science BV |
publisher.none.fl_str_mv |
Elsevier Science BV |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595697094459392 |