Increasing reliability on UAV fading scenarios
Main Author: | |
---|---|
Publication Date: | 2022 |
Other Authors: | , , , , , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10071/28598 |
Summary: | Unmanned aerial vehicles (UAVs) are the next technology to be incorporated into a telecommunications network to improve command and control on a large scale in both line-of-sight (LOS) and non-line-of-sight (NLOS) conditions. However, there is still room for improvement in terms of reliability. This paper investigates Constant Packet Combining (CPC) and Adaptive Packet Combining (APC) techniques applied to Unmanned Aerial Vehicle (UAV) communication in the presence of large-scale fading, where the channels are subject to sudden degradation for long periods due to obstructions. We use Single Carrier (SC) Frequency Domain Equalization (FDE) combined with the Iterative Block Decision-Feedback Equalizer (IB-DFE) to handle command and control messages mapped for UAV use cases. We present closed-form equations for the equalization design as well as the performance parameters such as Bit Error Rate (BER), the Packet Error Rate (PER), the throughput, the retransmissions amount, the goodput (the transmission rate without the retransmissions quantity), and the outage probability. Then, we analyze the system performance using correlated, independent, and equal channels. There is a trade-off between the overall available power, throughput, and reliability. For instance, more retransmissions result in higher reliability, power consumption and lower goodputs (effective data rates). CPC validates the transmission system and confirms the improvement of BER and PER parameters without energy efficiency optimization. APC is appealing because it can reduce the number of retransmissions for all channels used with the advantage of meeting energy efficiency requirements by adapting the overall power to the scenario experienced by the UAV. |
id |
RCAP_dbc527d17312ecd9a18bb6f334f560d0 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/28598 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Increasing reliability on UAV fading scenariosDynamic networksDisastersDrone simulationPacket combiningReliabilityUAVUnmanned aerial vehicles4G5GUnmanned aerial vehicles (UAVs) are the next technology to be incorporated into a telecommunications network to improve command and control on a large scale in both line-of-sight (LOS) and non-line-of-sight (NLOS) conditions. However, there is still room for improvement in terms of reliability. This paper investigates Constant Packet Combining (CPC) and Adaptive Packet Combining (APC) techniques applied to Unmanned Aerial Vehicle (UAV) communication in the presence of large-scale fading, where the channels are subject to sudden degradation for long periods due to obstructions. We use Single Carrier (SC) Frequency Domain Equalization (FDE) combined with the Iterative Block Decision-Feedback Equalizer (IB-DFE) to handle command and control messages mapped for UAV use cases. We present closed-form equations for the equalization design as well as the performance parameters such as Bit Error Rate (BER), the Packet Error Rate (PER), the throughput, the retransmissions amount, the goodput (the transmission rate without the retransmissions quantity), and the outage probability. Then, we analyze the system performance using correlated, independent, and equal channels. There is a trade-off between the overall available power, throughput, and reliability. For instance, more retransmissions result in higher reliability, power consumption and lower goodputs (effective data rates). CPC validates the transmission system and confirms the improvement of BER and PER parameters without energy efficiency optimization. APC is appealing because it can reduce the number of retransmissions for all channels used with the advantage of meeting energy efficiency requirements by adapting the overall power to the scenario experienced by the UAV.IEEE2023-05-16T15:32:00Z2022-01-01T00:00:00Z20222023-05-16T16:28:33Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/28598eng2169-353610.1109/ACCESS.2022.3149588Viana, J.Madeira, J.NidhiSebastião, P.Cercas, F.Mihovska, A.Dinis, R.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-07-07T02:59:08Zoai:repositorio.iscte-iul.pt:10071/28598Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T18:12:49.982502Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Increasing reliability on UAV fading scenarios |
title |
Increasing reliability on UAV fading scenarios |
spellingShingle |
Increasing reliability on UAV fading scenarios Viana, J. Dynamic networks Disasters Drone simulation Packet combining Reliability UAV Unmanned aerial vehicles 4G 5G |
title_short |
Increasing reliability on UAV fading scenarios |
title_full |
Increasing reliability on UAV fading scenarios |
title_fullStr |
Increasing reliability on UAV fading scenarios |
title_full_unstemmed |
Increasing reliability on UAV fading scenarios |
title_sort |
Increasing reliability on UAV fading scenarios |
author |
Viana, J. |
author_facet |
Viana, J. Madeira, J. Nidhi Sebastião, P. Cercas, F. Mihovska, A. Dinis, R. |
author_role |
author |
author2 |
Madeira, J. Nidhi Sebastião, P. Cercas, F. Mihovska, A. Dinis, R. |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Viana, J. Madeira, J. Nidhi Sebastião, P. Cercas, F. Mihovska, A. Dinis, R. |
dc.subject.por.fl_str_mv |
Dynamic networks Disasters Drone simulation Packet combining Reliability UAV Unmanned aerial vehicles 4G 5G |
topic |
Dynamic networks Disasters Drone simulation Packet combining Reliability UAV Unmanned aerial vehicles 4G 5G |
description |
Unmanned aerial vehicles (UAVs) are the next technology to be incorporated into a telecommunications network to improve command and control on a large scale in both line-of-sight (LOS) and non-line-of-sight (NLOS) conditions. However, there is still room for improvement in terms of reliability. This paper investigates Constant Packet Combining (CPC) and Adaptive Packet Combining (APC) techniques applied to Unmanned Aerial Vehicle (UAV) communication in the presence of large-scale fading, where the channels are subject to sudden degradation for long periods due to obstructions. We use Single Carrier (SC) Frequency Domain Equalization (FDE) combined with the Iterative Block Decision-Feedback Equalizer (IB-DFE) to handle command and control messages mapped for UAV use cases. We present closed-form equations for the equalization design as well as the performance parameters such as Bit Error Rate (BER), the Packet Error Rate (PER), the throughput, the retransmissions amount, the goodput (the transmission rate without the retransmissions quantity), and the outage probability. Then, we analyze the system performance using correlated, independent, and equal channels. There is a trade-off between the overall available power, throughput, and reliability. For instance, more retransmissions result in higher reliability, power consumption and lower goodputs (effective data rates). CPC validates the transmission system and confirms the improvement of BER and PER parameters without energy efficiency optimization. APC is appealing because it can reduce the number of retransmissions for all channels used with the advantage of meeting energy efficiency requirements by adapting the overall power to the scenario experienced by the UAV. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01T00:00:00Z 2022 2023-05-16T15:32:00Z 2023-05-16T16:28:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/28598 |
url |
http://hdl.handle.net/10071/28598 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2169-3536 10.1109/ACCESS.2022.3149588 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833597260107087872 |