Evaluation of cytotoxic and genotoxic effects of Microcystin-LR in Saccharomyces cerevisiae

Bibliographic Details
Main Author: Barreiros, Sara
Publication Date: 2017
Format: Master thesis
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10400.18/5941
Summary: Microcystins (MC) are hepatotoxins produced by cyanobacteria. Among the MCs, the microcystin-LR (MC-LR), produced by several cyanobacterial species, especially by the species Microcystis aeruginosa, is the most abundant and also the most well studied cyanotoxin. MCs are cyclic peptides which have high affinity for protein phosphatases Serine/Threonine (PPs), namely PP1 and PP2A, thus acting as their inhibitors, especially of the last one. It is from these interactions that a series of events occur which are responsible for the MCs cytotoxic and genotoxic effects on animal cells. It is also known that MCs induce oxidative stress in cells due to the production of reactive oxygen species (ROS), however a complete characterization of the effects of these toxins has not yet been obtained. This project intends to clarify some of the molecular mechanisms of MC-LR toxicity in animal cells using Saccharomyces cerevisiae as an eukaryotic organism model. To evaluate the cytotoxic effects of MC-LR, a cell viability assay was used to determine the functional capacity of the mitochondria, the MTT assay, after exposing the yeasts to different concentrations of MC-LR for 4 hours. Genotoxic effects were evaluated by gene expression studies for genes Rad27, Apn1, Apn2, Ntg1 and Ntg2 (from the BER DNA repair system) and Cdc55 gene which encodes the PP2A phosphatase protein, using the Real-Time qPCR technique. The reference genes used for expression normalization were Alg9 and Taf10. Furthermore, it was attempted to adapt the single cell gel electrophoresis assay (comet assay), conventionally performed on mammalian cells, to Saccharomyces cerevisiae cells, in order to quantify induced DNA breaks. MTT was optimized and successfully used in S. cerevisiae. Apparently, MC-LR is not cytotoxic for Saccharomyces cerevisiae, although these results should be confirmed with other methods that accessed cell viability. Regarding the Comet assay, the results were not conclusive, possibly due to the difficulty in optimizing the method when applied to yeast cells, particularly in the DNA migration on the electric field. However, the first two steps of the YCA protocol were optimized. Concerning the RTqPCR method it was possible to obtain tendencies in the gene expression levels, when compared with the control situation, thus revealing that MC-LR affects differently both BER pathways. Despite the difficulty of reproducing some methods in yeast cells, it appears that microcystin- LR plays a critical role in the toxicity of eukaryotic cells. This work allowed us to contribute with a little more information to a still relative unknown study field.
id RCAP_db00d6f5668100691cd59b24d01b6171
oai_identifier_str oai:repositorio.insa.pt:10400.18/5941
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Evaluation of cytotoxic and genotoxic effects of Microcystin-LR in Saccharomyces cerevisiaePesquisa de efeitos genotóxicos e citotóxicos em Saccharomyces cerevisiae exposta a microcistinas-LRMicrocystinsSaccharomyces cerevisiaeGenotoxicityCytotoxicityMicrocistinaGenotoxicidadeCitotoxicidadeGenotoxicidade AmbientalMicrocystins (MC) are hepatotoxins produced by cyanobacteria. Among the MCs, the microcystin-LR (MC-LR), produced by several cyanobacterial species, especially by the species Microcystis aeruginosa, is the most abundant and also the most well studied cyanotoxin. MCs are cyclic peptides which have high affinity for protein phosphatases Serine/Threonine (PPs), namely PP1 and PP2A, thus acting as their inhibitors, especially of the last one. It is from these interactions that a series of events occur which are responsible for the MCs cytotoxic and genotoxic effects on animal cells. It is also known that MCs induce oxidative stress in cells due to the production of reactive oxygen species (ROS), however a complete characterization of the effects of these toxins has not yet been obtained. This project intends to clarify some of the molecular mechanisms of MC-LR toxicity in animal cells using Saccharomyces cerevisiae as an eukaryotic organism model. To evaluate the cytotoxic effects of MC-LR, a cell viability assay was used to determine the functional capacity of the mitochondria, the MTT assay, after exposing the yeasts to different concentrations of MC-LR for 4 hours. Genotoxic effects were evaluated by gene expression studies for genes Rad27, Apn1, Apn2, Ntg1 and Ntg2 (from the BER DNA repair system) and Cdc55 gene which encodes the PP2A phosphatase protein, using the Real-Time qPCR technique. The reference genes used for expression normalization were Alg9 and Taf10. Furthermore, it was attempted to adapt the single cell gel electrophoresis assay (comet assay), conventionally performed on mammalian cells, to Saccharomyces cerevisiae cells, in order to quantify induced DNA breaks. MTT was optimized and successfully used in S. cerevisiae. Apparently, MC-LR is not cytotoxic for Saccharomyces cerevisiae, although these results should be confirmed with other methods that accessed cell viability. Regarding the Comet assay, the results were not conclusive, possibly due to the difficulty in optimizing the method when applied to yeast cells, particularly in the DNA migration on the electric field. However, the first two steps of the YCA protocol were optimized. Concerning the RTqPCR method it was possible to obtain tendencies in the gene expression levels, when compared with the control situation, thus revealing that MC-LR affects differently both BER pathways. Despite the difficulty of reproducing some methods in yeast cells, it appears that microcystin- LR plays a critical role in the toxicity of eukaryotic cells. This work allowed us to contribute with a little more information to a still relative unknown study field.Valério, ElisabeteDias, DeodáliaRepositório Científico do Instituto Nacional de SaúdeBarreiros, Sara2019-02-25T14:42:11Z20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.18/5941enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-26T14:29:40Zoai:repositorio.insa.pt:10400.18/5941Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T21:44:25.106234Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Evaluation of cytotoxic and genotoxic effects of Microcystin-LR in Saccharomyces cerevisiae
Pesquisa de efeitos genotóxicos e citotóxicos em Saccharomyces cerevisiae exposta a microcistinas-LR
title Evaluation of cytotoxic and genotoxic effects of Microcystin-LR in Saccharomyces cerevisiae
spellingShingle Evaluation of cytotoxic and genotoxic effects of Microcystin-LR in Saccharomyces cerevisiae
Barreiros, Sara
Microcystins
Saccharomyces cerevisiae
Genotoxicity
Cytotoxicity
Microcistina
Genotoxicidade
Citotoxicidade
Genotoxicidade Ambiental
title_short Evaluation of cytotoxic and genotoxic effects of Microcystin-LR in Saccharomyces cerevisiae
title_full Evaluation of cytotoxic and genotoxic effects of Microcystin-LR in Saccharomyces cerevisiae
title_fullStr Evaluation of cytotoxic and genotoxic effects of Microcystin-LR in Saccharomyces cerevisiae
title_full_unstemmed Evaluation of cytotoxic and genotoxic effects of Microcystin-LR in Saccharomyces cerevisiae
title_sort Evaluation of cytotoxic and genotoxic effects of Microcystin-LR in Saccharomyces cerevisiae
author Barreiros, Sara
author_facet Barreiros, Sara
author_role author
dc.contributor.none.fl_str_mv Valério, Elisabete
Dias, Deodália
Repositório Científico do Instituto Nacional de Saúde
dc.contributor.author.fl_str_mv Barreiros, Sara
dc.subject.por.fl_str_mv Microcystins
Saccharomyces cerevisiae
Genotoxicity
Cytotoxicity
Microcistina
Genotoxicidade
Citotoxicidade
Genotoxicidade Ambiental
topic Microcystins
Saccharomyces cerevisiae
Genotoxicity
Cytotoxicity
Microcistina
Genotoxicidade
Citotoxicidade
Genotoxicidade Ambiental
description Microcystins (MC) are hepatotoxins produced by cyanobacteria. Among the MCs, the microcystin-LR (MC-LR), produced by several cyanobacterial species, especially by the species Microcystis aeruginosa, is the most abundant and also the most well studied cyanotoxin. MCs are cyclic peptides which have high affinity for protein phosphatases Serine/Threonine (PPs), namely PP1 and PP2A, thus acting as their inhibitors, especially of the last one. It is from these interactions that a series of events occur which are responsible for the MCs cytotoxic and genotoxic effects on animal cells. It is also known that MCs induce oxidative stress in cells due to the production of reactive oxygen species (ROS), however a complete characterization of the effects of these toxins has not yet been obtained. This project intends to clarify some of the molecular mechanisms of MC-LR toxicity in animal cells using Saccharomyces cerevisiae as an eukaryotic organism model. To evaluate the cytotoxic effects of MC-LR, a cell viability assay was used to determine the functional capacity of the mitochondria, the MTT assay, after exposing the yeasts to different concentrations of MC-LR for 4 hours. Genotoxic effects were evaluated by gene expression studies for genes Rad27, Apn1, Apn2, Ntg1 and Ntg2 (from the BER DNA repair system) and Cdc55 gene which encodes the PP2A phosphatase protein, using the Real-Time qPCR technique. The reference genes used for expression normalization were Alg9 and Taf10. Furthermore, it was attempted to adapt the single cell gel electrophoresis assay (comet assay), conventionally performed on mammalian cells, to Saccharomyces cerevisiae cells, in order to quantify induced DNA breaks. MTT was optimized and successfully used in S. cerevisiae. Apparently, MC-LR is not cytotoxic for Saccharomyces cerevisiae, although these results should be confirmed with other methods that accessed cell viability. Regarding the Comet assay, the results were not conclusive, possibly due to the difficulty in optimizing the method when applied to yeast cells, particularly in the DNA migration on the electric field. However, the first two steps of the YCA protocol were optimized. Concerning the RTqPCR method it was possible to obtain tendencies in the gene expression levels, when compared with the control situation, thus revealing that MC-LR affects differently both BER pathways. Despite the difficulty of reproducing some methods in yeast cells, it appears that microcystin- LR plays a critical role in the toxicity of eukaryotic cells. This work allowed us to contribute with a little more information to a still relative unknown study field.
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
2019-02-25T14:42:11Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.18/5941
url http://hdl.handle.net/10400.18/5941
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833599404032917504