A Deep Learning integrated mortality model for Longevity Swap pricing
Main Author: | |
---|---|
Publication Date: | 2022 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/145541 |
Summary: | Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Risk Analysis and Management |
id |
RCAP_d97e95f28c004baa802ca6dc70a3f21b |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/145541 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
A Deep Learning integrated mortality model for Longevity Swap pricingMortalityDeep LearningLong short-term memoryGated Recurrent UnitLee-Carter modelLongevity riskLongevity swapLongevity swap pricingDissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Risk Analysis and ManagementThis research empirically investigates the usage of Recurrent Neural Networks (RNN) to improve the accuracy of mortality rates forecasting within the context of Longevity linked securities pricing. The benchmark model in the mortality field is the classical Lee-Carter; the forecasting procedure of these model is often conducted with ARIMA models. I consider a fixed forecasting time horizon in order to compare the performance of Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) with different hyperparameter and data input choices against that produced by the best fitted ARIMA models. The results are then applied to Longevity Swap pricing in order to better estimates the premium of the derivatives contracts. The investigation is conducted for six countries, using mortality data from 1950 onwards, differentiating by gender. The research shows how RNN outperform the classical ARIMA models in the forecasting procedure. Although the advantages of RNN’s techniques are strictly bounded to the set of hyperparameter used for the comparison; the outcomes of such approaches can vary greatly using different input choices. In the end the results shows that an RNN approach can bring significant changes to the price of Longevity Linked securities. The research is in the first place one of the few to test the forecasting accuracy of Deep Learning methods accounting for alternative methodological, hyperparameter and data input choices. Afterwards the investigation demonstrate the necessity of revisit the classical mortality models in order to better estimates prices of derivatives contracts that are very useful in the context of Longevity risk.Bravo, Jorge Miguel VenturaRUNSalvo, Alberto Di2022-11-15T18:55:51Z2022-10-252022-10-25T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/145541TID:203126130enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:06:43Zoai:run.unl.pt:10362/145541Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:37:13.016154Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
A Deep Learning integrated mortality model for Longevity Swap pricing |
title |
A Deep Learning integrated mortality model for Longevity Swap pricing |
spellingShingle |
A Deep Learning integrated mortality model for Longevity Swap pricing Salvo, Alberto Di Mortality Deep Learning Long short-term memory Gated Recurrent Unit Lee-Carter model Longevity risk Longevity swap Longevity swap pricing |
title_short |
A Deep Learning integrated mortality model for Longevity Swap pricing |
title_full |
A Deep Learning integrated mortality model for Longevity Swap pricing |
title_fullStr |
A Deep Learning integrated mortality model for Longevity Swap pricing |
title_full_unstemmed |
A Deep Learning integrated mortality model for Longevity Swap pricing |
title_sort |
A Deep Learning integrated mortality model for Longevity Swap pricing |
author |
Salvo, Alberto Di |
author_facet |
Salvo, Alberto Di |
author_role |
author |
dc.contributor.none.fl_str_mv |
Bravo, Jorge Miguel Ventura RUN |
dc.contributor.author.fl_str_mv |
Salvo, Alberto Di |
dc.subject.por.fl_str_mv |
Mortality Deep Learning Long short-term memory Gated Recurrent Unit Lee-Carter model Longevity risk Longevity swap Longevity swap pricing |
topic |
Mortality Deep Learning Long short-term memory Gated Recurrent Unit Lee-Carter model Longevity risk Longevity swap Longevity swap pricing |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Risk Analysis and Management |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-15T18:55:51Z 2022-10-25 2022-10-25T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/145541 TID:203126130 |
url |
http://hdl.handle.net/10362/145541 |
identifier_str_mv |
TID:203126130 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596839260061696 |