Convergence of LR algorithm for a one-point spectrum tridiagonal matrix
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Texto Completo: | http://hdl.handle.net/1822/11322 |
Resumo: | We proved convergence for the basic LR algorithm on a real unreduced tridiagonal matrix with a one-point spectrum - the Jordan form is one big Jordan block. First we develop properties of eigenvector matrices. We also show how to deal with the singular case. |
id |
RCAP_d97403334e72f4f47d52fb8c2e17339e |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/11322 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Convergence of LR algorithm for a one-point spectrum tridiagonal matrixUnsymmetric tridiagonal matricesLR algorithmMultiple eigenvaluesScience & TechnologyWe proved convergence for the basic LR algorithm on a real unreduced tridiagonal matrix with a one-point spectrum - the Jordan form is one big Jordan block. First we develop properties of eigenvector matrices. We also show how to deal with the singular case.SpringerUniversidade do MinhoFerreira, CarlaParlett, Beresford2009-06-032009-06-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/11322eng"Numerische Mathematic". ISSN 0029-599X. 113:3 (2009) 417-431.0029-599X10.1007/s00211-009-0238-2www.springerlink.com/content/nv10179uv7486k53info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:01:14Zoai:repositorium.sdum.uminho.pt:1822/11322Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:38:14.374764Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Convergence of LR algorithm for a one-point spectrum tridiagonal matrix |
title |
Convergence of LR algorithm for a one-point spectrum tridiagonal matrix |
spellingShingle |
Convergence of LR algorithm for a one-point spectrum tridiagonal matrix Ferreira, Carla Unsymmetric tridiagonal matrices LR algorithm Multiple eigenvalues Science & Technology |
title_short |
Convergence of LR algorithm for a one-point spectrum tridiagonal matrix |
title_full |
Convergence of LR algorithm for a one-point spectrum tridiagonal matrix |
title_fullStr |
Convergence of LR algorithm for a one-point spectrum tridiagonal matrix |
title_full_unstemmed |
Convergence of LR algorithm for a one-point spectrum tridiagonal matrix |
title_sort |
Convergence of LR algorithm for a one-point spectrum tridiagonal matrix |
author |
Ferreira, Carla |
author_facet |
Ferreira, Carla Parlett, Beresford |
author_role |
author |
author2 |
Parlett, Beresford |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Ferreira, Carla Parlett, Beresford |
dc.subject.por.fl_str_mv |
Unsymmetric tridiagonal matrices LR algorithm Multiple eigenvalues Science & Technology |
topic |
Unsymmetric tridiagonal matrices LR algorithm Multiple eigenvalues Science & Technology |
description |
We proved convergence for the basic LR algorithm on a real unreduced tridiagonal matrix with a one-point spectrum - the Jordan form is one big Jordan block. First we develop properties of eigenvector matrices. We also show how to deal with the singular case. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-06-03 2009-06-03T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/11322 |
url |
http://hdl.handle.net/1822/11322 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
"Numerische Mathematic". ISSN 0029-599X. 113:3 (2009) 417-431. 0029-599X 10.1007/s00211-009-0238-2 www.springerlink.com/content/nv10179uv7486k53 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833595439590408192 |