Music Emotion Recognition: The Importance of Melodic Features
Main Author: | |
---|---|
Publication Date: | 2013 |
Other Authors: | , |
Format: | Other |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/10316/95166 |
Summary: | We study the importance of a melodic audio (MA) feature set in music emotion recognition (MER) and compare its performance to an approach using only standard audio (SA) features. We also analyse the fusion of both types of features. Employing only SA features, the best attained performance was 46.3%, while using only MA features the best outcome was 59.1% (F- measure). A combination of SA and MA features improved results to 64%. These results might have an important impact to help break the so-called glass ceiling in MER, as most current approaches are based on SA features. |
id |
RCAP_d9593f72572cc3fc11325a24c7b9716e |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/95166 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Music Emotion Recognition: The Importance of Melodic Featuresaudiomachine learningmelodic featuresmusic emotion recognitionWe study the importance of a melodic audio (MA) feature set in music emotion recognition (MER) and compare its performance to an approach using only standard audio (SA) features. We also analyse the fusion of both types of features. Employing only SA features, the best attained performance was 46.3%, while using only MA features the best outcome was 59.1% (F- measure). A combination of SA and MA features improved results to 64%. These results might have an important impact to help break the so-called glass ceiling in MER, as most current approaches are based on SA features.This work was supported by the MOODetector project (PTDC/EIA-EIA/102185/2008), financed by the Fundação para Ciência e a Tecnologia (FCT) and Programa Operacional Temático Factores de Competitividade (COMPETE) - Portugal.2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/otherhttps://hdl.handle.net/10316/95166https://hdl.handle.net/10316/95166engRocha, BrunoPanda, RenatoPaiva, Rui Pedroinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2022-05-25T02:38:20Zoai:estudogeral.uc.pt:10316/95166Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T05:43:15.843695Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Music Emotion Recognition: The Importance of Melodic Features |
title |
Music Emotion Recognition: The Importance of Melodic Features |
spellingShingle |
Music Emotion Recognition: The Importance of Melodic Features Rocha, Bruno audio machine learning melodic features music emotion recognition |
title_short |
Music Emotion Recognition: The Importance of Melodic Features |
title_full |
Music Emotion Recognition: The Importance of Melodic Features |
title_fullStr |
Music Emotion Recognition: The Importance of Melodic Features |
title_full_unstemmed |
Music Emotion Recognition: The Importance of Melodic Features |
title_sort |
Music Emotion Recognition: The Importance of Melodic Features |
author |
Rocha, Bruno |
author_facet |
Rocha, Bruno Panda, Renato Paiva, Rui Pedro |
author_role |
author |
author2 |
Panda, Renato Paiva, Rui Pedro |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Rocha, Bruno Panda, Renato Paiva, Rui Pedro |
dc.subject.por.fl_str_mv |
audio machine learning melodic features music emotion recognition |
topic |
audio machine learning melodic features music emotion recognition |
description |
We study the importance of a melodic audio (MA) feature set in music emotion recognition (MER) and compare its performance to an approach using only standard audio (SA) features. We also analyse the fusion of both types of features. Employing only SA features, the best attained performance was 46.3%, while using only MA features the best outcome was 59.1% (F- measure). A combination of SA and MA features improved results to 64%. These results might have an important impact to help break the so-called glass ceiling in MER, as most current approaches are based on SA features. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/other |
format |
other |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10316/95166 https://hdl.handle.net/10316/95166 |
url |
https://hdl.handle.net/10316/95166 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833602450533122048 |