Modified particle swarm optimization for day-ahead distributed energy resources scheduling including vehicle-to-grid

Detalhes bibliográficos
Autor(a) principal: Soares, João André Pinto
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10400.22/4408
Resumo: This thesis proposes a modified Particle Swarm Optimization (PSO) approach for the day-ahead scheduling of Distributed Energy Resources (DER) in smart grids, considering Electric Vehicles (EVs) with gridable capability (vehicle-to-grid). The proposed methodology introduces several changes in traditional PSO meta-heuristic to solve effectively the scheduling problem of DER with EVs. This thesis proposes an intelligent mechanism for adjusting the velocity limits of the swarm to alleviate violations of problem constraints and to improve the quality of the solution, namely the value of the objective function. In addition, a hybridization of PSO method is used, which combines this meta-heuristic with an exact method, a full ac power flow in order to validate network constraints of the solutions explored by the swarm. This thesis proposes a trip reduce demand response program for EVs users. A datamining based methodology is used to support the network operator in the definition of this program and to estimate how much demand response is adequate for a certain operation condition. The case studies included in the thesis aim to demonstrate the effectiveness of the modified PSO approach to the problem of DER scheduling considering EVs. An application named EV Scenario Simulator (EVeSSi) has been developed. EVeSSi allows creating scenarios considering EVs in distribution networks. A case study comparison of the modified PSO with an accurate mixed integer non-linear programming is presented. Furthermore, it is also compared with other variants of PSO, and the traditional PSO. Addionatly, different methods of EV battery management, namely uncontrolled charging, smart charging and vehicle-to-grid, are compared. Finally, a test case is presented to illustrate the use of the proposed demand response program for EVs and the data-mining methodology applied to a large database of operation scenarios.
id RCAP_d946549ceb54ee528ff152d45e85b7ac
oai_identifier_str oai:recipp.ipp.pt:10400.22/4408
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Modified particle swarm optimization for day-ahead distributed energy resources scheduling including vehicle-to-gridElectric VehiclesElectric Vehicles Demand ResponseOptimizationParticle Swarm OptimizationOptimizaçãoGestão da Procura para Veículos EléctricosVeículos EléctricosThis thesis proposes a modified Particle Swarm Optimization (PSO) approach for the day-ahead scheduling of Distributed Energy Resources (DER) in smart grids, considering Electric Vehicles (EVs) with gridable capability (vehicle-to-grid). The proposed methodology introduces several changes in traditional PSO meta-heuristic to solve effectively the scheduling problem of DER with EVs. This thesis proposes an intelligent mechanism for adjusting the velocity limits of the swarm to alleviate violations of problem constraints and to improve the quality of the solution, namely the value of the objective function. In addition, a hybridization of PSO method is used, which combines this meta-heuristic with an exact method, a full ac power flow in order to validate network constraints of the solutions explored by the swarm. This thesis proposes a trip reduce demand response program for EVs users. A datamining based methodology is used to support the network operator in the definition of this program and to estimate how much demand response is adequate for a certain operation condition. The case studies included in the thesis aim to demonstrate the effectiveness of the modified PSO approach to the problem of DER scheduling considering EVs. An application named EV Scenario Simulator (EVeSSi) has been developed. EVeSSi allows creating scenarios considering EVs in distribution networks. A case study comparison of the modified PSO with an accurate mixed integer non-linear programming is presented. Furthermore, it is also compared with other variants of PSO, and the traditional PSO. Addionatly, different methods of EV battery management, namely uncontrolled charging, smart charging and vehicle-to-grid, are compared. Finally, a test case is presented to illustrate the use of the proposed demand response program for EVs and the data-mining methodology applied to a large database of operation scenarios.Instituto Politécnico do Porto. Instituto Superior de Engenharia do PortoVale, ZitaMorais, H.REPOSITÓRIO P.PORTOSoares, João André Pinto2014-05-30T11:38:43Z20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/4408enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-03-07T10:16:52Zoai:recipp.ipp.pt:10400.22/4408Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-29T00:46:18.789840Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Modified particle swarm optimization for day-ahead distributed energy resources scheduling including vehicle-to-grid
title Modified particle swarm optimization for day-ahead distributed energy resources scheduling including vehicle-to-grid
spellingShingle Modified particle swarm optimization for day-ahead distributed energy resources scheduling including vehicle-to-grid
Soares, João André Pinto
Electric Vehicles
Electric Vehicles Demand Response
Optimization
Particle Swarm Optimization
Optimização
Gestão da Procura para Veículos Eléctricos
Veículos Eléctricos
title_short Modified particle swarm optimization for day-ahead distributed energy resources scheduling including vehicle-to-grid
title_full Modified particle swarm optimization for day-ahead distributed energy resources scheduling including vehicle-to-grid
title_fullStr Modified particle swarm optimization for day-ahead distributed energy resources scheduling including vehicle-to-grid
title_full_unstemmed Modified particle swarm optimization for day-ahead distributed energy resources scheduling including vehicle-to-grid
title_sort Modified particle swarm optimization for day-ahead distributed energy resources scheduling including vehicle-to-grid
author Soares, João André Pinto
author_facet Soares, João André Pinto
author_role author
dc.contributor.none.fl_str_mv Vale, Zita
Morais, H.
REPOSITÓRIO P.PORTO
dc.contributor.author.fl_str_mv Soares, João André Pinto
dc.subject.por.fl_str_mv Electric Vehicles
Electric Vehicles Demand Response
Optimization
Particle Swarm Optimization
Optimização
Gestão da Procura para Veículos Eléctricos
Veículos Eléctricos
topic Electric Vehicles
Electric Vehicles Demand Response
Optimization
Particle Swarm Optimization
Optimização
Gestão da Procura para Veículos Eléctricos
Veículos Eléctricos
description This thesis proposes a modified Particle Swarm Optimization (PSO) approach for the day-ahead scheduling of Distributed Energy Resources (DER) in smart grids, considering Electric Vehicles (EVs) with gridable capability (vehicle-to-grid). The proposed methodology introduces several changes in traditional PSO meta-heuristic to solve effectively the scheduling problem of DER with EVs. This thesis proposes an intelligent mechanism for adjusting the velocity limits of the swarm to alleviate violations of problem constraints and to improve the quality of the solution, namely the value of the objective function. In addition, a hybridization of PSO method is used, which combines this meta-heuristic with an exact method, a full ac power flow in order to validate network constraints of the solutions explored by the swarm. This thesis proposes a trip reduce demand response program for EVs users. A datamining based methodology is used to support the network operator in the definition of this program and to estimate how much demand response is adequate for a certain operation condition. The case studies included in the thesis aim to demonstrate the effectiveness of the modified PSO approach to the problem of DER scheduling considering EVs. An application named EV Scenario Simulator (EVeSSi) has been developed. EVeSSi allows creating scenarios considering EVs in distribution networks. A case study comparison of the modified PSO with an accurate mixed integer non-linear programming is presented. Furthermore, it is also compared with other variants of PSO, and the traditional PSO. Addionatly, different methods of EV battery management, namely uncontrolled charging, smart charging and vehicle-to-grid, are compared. Finally, a test case is presented to illustrate the use of the proposed demand response program for EVs and the data-mining methodology applied to a large database of operation scenarios.
publishDate 2011
dc.date.none.fl_str_mv 2011
2011-01-01T00:00:00Z
2014-05-30T11:38:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/4408
url http://hdl.handle.net/10400.22/4408
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Instituto Politécnico do Porto. Instituto Superior de Engenharia do Porto
publisher.none.fl_str_mv Instituto Politécnico do Porto. Instituto Superior de Engenharia do Porto
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833600689020862464