Biased artificial intelligence - algorithmic fairness and human perception on biased AI
Main Author: | |
---|---|
Publication Date: | 2020 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/109738 |
Summary: | Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies Management |
id |
RCAP_d83a22ca6ef9bd8598d2b9c6b82516fe |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/109738 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Biased artificial intelligence - algorithmic fairness and human perception on biased AIArtificial intelligenceBiased artificial intelligenceMachine learningAlgorithmic fairnessAlgorithmic perceptionDiscriminationDissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies ManagementAs artificial intelligence (AI) is given more power in many decisions, potential resulting biases in respect to gender, race, and other minorities have to be analyzed and reduced to a minimum. Machine learning (ML) models are implemented in various areas and can decide who gets invited to an interview, granted a loan, gets the right cancer treatment, or goes to prison. Consequently, biases can have a crucial negative impact on people’s life. This thesis highlights previous research in this field, shows its limitations and breaks down the content into its core components in s systematic manner. Therefore, types of existing biases, and areas where AI bias is most components in a systematic manner. Therefore, types of existing biases, and areas where AI is most prevalent are defined. Further, root causes for discriminating algorithms are analyzed according to the AI model creation chain: data, coder, model, usage. An abundance of fairness measurements is classified and elaborated in a tabular format. Thereafter, bias mitigation techniques naming pre-processing, in-processing, and post-processing for ML algorithms are summarized, critically analyzed and limitations of research for unsupervised learning fairness measures are indicated.Pinheiro, Flávio Luís PortasOrghian, DianaRUNMachill, Sidney Anna2021-01-05T14:32:37Z2020-11-062020-11-06T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/109738TID:202572374enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:49:39Zoai:run.unl.pt:10362/109738Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:20:58.918070Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Biased artificial intelligence - algorithmic fairness and human perception on biased AI |
title |
Biased artificial intelligence - algorithmic fairness and human perception on biased AI |
spellingShingle |
Biased artificial intelligence - algorithmic fairness and human perception on biased AI Machill, Sidney Anna Artificial intelligence Biased artificial intelligence Machine learning Algorithmic fairness Algorithmic perception Discrimination |
title_short |
Biased artificial intelligence - algorithmic fairness and human perception on biased AI |
title_full |
Biased artificial intelligence - algorithmic fairness and human perception on biased AI |
title_fullStr |
Biased artificial intelligence - algorithmic fairness and human perception on biased AI |
title_full_unstemmed |
Biased artificial intelligence - algorithmic fairness and human perception on biased AI |
title_sort |
Biased artificial intelligence - algorithmic fairness and human perception on biased AI |
author |
Machill, Sidney Anna |
author_facet |
Machill, Sidney Anna |
author_role |
author |
dc.contributor.none.fl_str_mv |
Pinheiro, Flávio Luís Portas Orghian, Diana RUN |
dc.contributor.author.fl_str_mv |
Machill, Sidney Anna |
dc.subject.por.fl_str_mv |
Artificial intelligence Biased artificial intelligence Machine learning Algorithmic fairness Algorithmic perception Discrimination |
topic |
Artificial intelligence Biased artificial intelligence Machine learning Algorithmic fairness Algorithmic perception Discrimination |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies Management |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11-06 2020-11-06T00:00:00Z 2021-01-05T14:32:37Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/109738 TID:202572374 |
url |
http://hdl.handle.net/10362/109738 |
identifier_str_mv |
TID:202572374 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596629539618816 |