Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile points
Main Author: | |
---|---|
Publication Date: | 2005 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10773/6241 |
Summary: | The paper deals with convex Semi-In¯nite Programming (SIP) problems. A new concept of immobility order is introduced and an algorithm of determination of the immobility orders (DIO algorithm) and so called immobile points is suggested. It is shown that in the presence of the immobile points SIP problems do not satisfy the Slater condition. Given convex SIP problem, we determine all its immobile points and use them to formulate a Nonlinear Programming (NLP) problem in a special form. It is proved that optimality conditions for the (in¯nite) SIP problem can be formulated in terms of the analogous conditions for the corresponding (¯nite) NLP problem. The main result of the paper is the Implicit Optimality Criterion that permits to obtain new e±cient optimality conditions for the convex SIP problems (even not satisfying the Slater condition) using the known results of the optimality theory of NLP. |
id |
RCAP_d8240397404f4c8d8d9c28c9cb211ff1 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/6241 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile pointsSemi-infinite programmingNonlinear programmingThe Slater conditionOptimality criterionThe paper deals with convex Semi-In¯nite Programming (SIP) problems. A new concept of immobility order is introduced and an algorithm of determination of the immobility orders (DIO algorithm) and so called immobile points is suggested. It is shown that in the presence of the immobile points SIP problems do not satisfy the Slater condition. Given convex SIP problem, we determine all its immobile points and use them to formulate a Nonlinear Programming (NLP) problem in a special form. It is proved that optimality conditions for the (in¯nite) SIP problem can be formulated in terms of the analogous conditions for the corresponding (¯nite) NLP problem. The main result of the paper is the Implicit Optimality Criterion that permits to obtain new e±cient optimality conditions for the convex SIP problems (even not satisfying the Slater condition) using the known results of the optimality theory of NLP.Universidade de Aveiro2012-02-10T17:16:07Z2005-01-01T00:00:00Z2005info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/6241engKostyukova, O. I.Tchemisova, T. V.Yermalinskaya, S. A.info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T03:38:49Zoai:ria.ua.pt:10773/6241Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T13:41:41.508808Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile points |
title |
Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile points |
spellingShingle |
Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile points Kostyukova, O. I. Semi-infinite programming Nonlinear programming The Slater condition Optimality criterion |
title_short |
Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile points |
title_full |
Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile points |
title_fullStr |
Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile points |
title_full_unstemmed |
Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile points |
title_sort |
Convex semi-infinite programming: implicit optimality criterion based on the concept of immobile points |
author |
Kostyukova, O. I. |
author_facet |
Kostyukova, O. I. Tchemisova, T. V. Yermalinskaya, S. A. |
author_role |
author |
author2 |
Tchemisova, T. V. Yermalinskaya, S. A. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Kostyukova, O. I. Tchemisova, T. V. Yermalinskaya, S. A. |
dc.subject.por.fl_str_mv |
Semi-infinite programming Nonlinear programming The Slater condition Optimality criterion |
topic |
Semi-infinite programming Nonlinear programming The Slater condition Optimality criterion |
description |
The paper deals with convex Semi-In¯nite Programming (SIP) problems. A new concept of immobility order is introduced and an algorithm of determination of the immobility orders (DIO algorithm) and so called immobile points is suggested. It is shown that in the presence of the immobile points SIP problems do not satisfy the Slater condition. Given convex SIP problem, we determine all its immobile points and use them to formulate a Nonlinear Programming (NLP) problem in a special form. It is proved that optimality conditions for the (in¯nite) SIP problem can be formulated in terms of the analogous conditions for the corresponding (¯nite) NLP problem. The main result of the paper is the Implicit Optimality Criterion that permits to obtain new e±cient optimality conditions for the convex SIP problems (even not satisfying the Slater condition) using the known results of the optimality theory of NLP. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-01-01T00:00:00Z 2005 2012-02-10T17:16:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/6241 |
url |
http://hdl.handle.net/10773/6241 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade de Aveiro |
publisher.none.fl_str_mv |
Universidade de Aveiro |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833593988053991424 |