Determination of frutooligosaccharides adsorption parameters using ion-exchange resins

Bibliographic Details
Main Author: Nobre, Clarisse
Publication Date: 2009
Other Authors: Dominguez, Ana, Torres, D., Rocha, Orlando Ricardo Nunes, Rocha, I., Teixeira, J. A., Ferreira, Eugénio C., Rodrigues, L. R.
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/1822/17342
Summary: Fructooligosaccharides (FOS) are non-digestible sugars that beneficially affect the host by stimulating the growth of specific bacteria in the colon. In large scale, FOS can be produced from sucrose by fermentation. The fermentative broth obtained from this process is a complex mixture of salts and sugars. These sugar mixtures include FOS, namely kestose (GF2), nystose (GF3) and fructo-furanosylnystose (GF4), but also fructose, glucose and sucrose that must be separated. The major challenge when designing the downstream separation process is the choice of an efficient ion-exchange resin. Therefore, adsorption isotherms of the different compounds on a mixture are an important parameter to consider when selecting the resin. Moreover, salts and other sugars present in the mixture will influence the adsorption. In view of this, in the present work adsorption isotherms of FOS, both from fermentative broths and pure mixtures, were determined for several poly(styrene-co-divinylbenzene) commercial resins in the sodium and calcium forms. A static adsorption-desorption method was used to determine the equilibrium adsorptions. The adsorption isotherms for FOS were appropriately fitted using linear regression models. Since FOS separation is mainly based on size exclusion, GF2 was found to be the most adsorbed sugar in all resins, followed by GF3 and finally GF4. Results demonstrated that there are no significant differences between the adsorption of a pure mixture of FOS and a fermentative broth using the studied commercial calcium resins. However, this was not observed for the sodium form resin. In this later case, the sugars from the fermentative broths were found to be more adsorbed than from the pure mixtures. Results gathered in this study clearly demonstrated the importance of determining the adsorption parameters using real fermentative broths instead of pure mixtures, as the presence of other sugars and salts can influence in the adsorption.
id RCAP_d6cf4f3c6befcfc0d5953cccbca16388
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/17342
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Determination of frutooligosaccharides adsorption parameters using ion-exchange resinsFOSIon-exchange resinsFermentative brothFructooligosaccharides (FOS) are non-digestible sugars that beneficially affect the host by stimulating the growth of specific bacteria in the colon. In large scale, FOS can be produced from sucrose by fermentation. The fermentative broth obtained from this process is a complex mixture of salts and sugars. These sugar mixtures include FOS, namely kestose (GF2), nystose (GF3) and fructo-furanosylnystose (GF4), but also fructose, glucose and sucrose that must be separated. The major challenge when designing the downstream separation process is the choice of an efficient ion-exchange resin. Therefore, adsorption isotherms of the different compounds on a mixture are an important parameter to consider when selecting the resin. Moreover, salts and other sugars present in the mixture will influence the adsorption. In view of this, in the present work adsorption isotherms of FOS, both from fermentative broths and pure mixtures, were determined for several poly(styrene-co-divinylbenzene) commercial resins in the sodium and calcium forms. A static adsorption-desorption method was used to determine the equilibrium adsorptions. The adsorption isotherms for FOS were appropriately fitted using linear regression models. Since FOS separation is mainly based on size exclusion, GF2 was found to be the most adsorbed sugar in all resins, followed by GF3 and finally GF4. Results demonstrated that there are no significant differences between the adsorption of a pure mixture of FOS and a fermentative broth using the studied commercial calcium resins. However, this was not observed for the sodium form resin. In this later case, the sugars from the fermentative broths were found to be more adsorbed than from the pure mixtures. Results gathered in this study clearly demonstrated the importance of determining the adsorption parameters using real fermentative broths instead of pure mixtures, as the presence of other sugars and salts can influence in the adsorption.Universidade do MinhoNobre, ClarisseDominguez, AnaTorres, D.Rocha, Orlando Ricardo NunesRocha, I.Teixeira, J. A.Ferreira, Eugénio C.Rodrigues, L. R.20092009-01-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://hdl.handle.net/1822/17342enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:09:45Zoai:repositorium.sdum.uminho.pt:1822/17342Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:43:09.428537Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Determination of frutooligosaccharides adsorption parameters using ion-exchange resins
title Determination of frutooligosaccharides adsorption parameters using ion-exchange resins
spellingShingle Determination of frutooligosaccharides adsorption parameters using ion-exchange resins
Nobre, Clarisse
FOS
Ion-exchange resins
Fermentative broth
title_short Determination of frutooligosaccharides adsorption parameters using ion-exchange resins
title_full Determination of frutooligosaccharides adsorption parameters using ion-exchange resins
title_fullStr Determination of frutooligosaccharides adsorption parameters using ion-exchange resins
title_full_unstemmed Determination of frutooligosaccharides adsorption parameters using ion-exchange resins
title_sort Determination of frutooligosaccharides adsorption parameters using ion-exchange resins
author Nobre, Clarisse
author_facet Nobre, Clarisse
Dominguez, Ana
Torres, D.
Rocha, Orlando Ricardo Nunes
Rocha, I.
Teixeira, J. A.
Ferreira, Eugénio C.
Rodrigues, L. R.
author_role author
author2 Dominguez, Ana
Torres, D.
Rocha, Orlando Ricardo Nunes
Rocha, I.
Teixeira, J. A.
Ferreira, Eugénio C.
Rodrigues, L. R.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Nobre, Clarisse
Dominguez, Ana
Torres, D.
Rocha, Orlando Ricardo Nunes
Rocha, I.
Teixeira, J. A.
Ferreira, Eugénio C.
Rodrigues, L. R.
dc.subject.por.fl_str_mv FOS
Ion-exchange resins
Fermentative broth
topic FOS
Ion-exchange resins
Fermentative broth
description Fructooligosaccharides (FOS) are non-digestible sugars that beneficially affect the host by stimulating the growth of specific bacteria in the colon. In large scale, FOS can be produced from sucrose by fermentation. The fermentative broth obtained from this process is a complex mixture of salts and sugars. These sugar mixtures include FOS, namely kestose (GF2), nystose (GF3) and fructo-furanosylnystose (GF4), but also fructose, glucose and sucrose that must be separated. The major challenge when designing the downstream separation process is the choice of an efficient ion-exchange resin. Therefore, adsorption isotherms of the different compounds on a mixture are an important parameter to consider when selecting the resin. Moreover, salts and other sugars present in the mixture will influence the adsorption. In view of this, in the present work adsorption isotherms of FOS, both from fermentative broths and pure mixtures, were determined for several poly(styrene-co-divinylbenzene) commercial resins in the sodium and calcium forms. A static adsorption-desorption method was used to determine the equilibrium adsorptions. The adsorption isotherms for FOS were appropriately fitted using linear regression models. Since FOS separation is mainly based on size exclusion, GF2 was found to be the most adsorbed sugar in all resins, followed by GF3 and finally GF4. Results demonstrated that there are no significant differences between the adsorption of a pure mixture of FOS and a fermentative broth using the studied commercial calcium resins. However, this was not observed for the sodium form resin. In this later case, the sugars from the fermentative broths were found to be more adsorbed than from the pure mixtures. Results gathered in this study clearly demonstrated the importance of determining the adsorption parameters using real fermentative broths instead of pure mixtures, as the presence of other sugars and salts can influence in the adsorption.
publishDate 2009
dc.date.none.fl_str_mv 2009
2009-01-01T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1822/17342
url https://hdl.handle.net/1822/17342
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833595495521452032