Optical fiber-based sensing method for nanoparticle detection through supervised back-scattering analysis: A potential contributor for biomedicine
| Main Author: | |
|---|---|
| Publication Date: | 2019 |
| Other Authors: | , , , , |
| Format: | Article |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | https://hdl.handle.net/10216/136320 |
Summary: | Background: In view of the growing importance of nanotechnologies, the detection/identification of nanoparticles type has been considered of utmost importance. Although the characterization of synthetic/organic nanoparticles is currently considered a priority (eg, drug delivery devices, nanotextiles, theranostic nanoparticles), there are many examples of “naturally” generated nanostructures - for example, extracellular vesicles (EVs), lipoproteins, and virus - that provide useful information about human physiology or clinical conditions. For example, the detection of tumor-related exosomes, a specific type of EVs, in circulating fluids has been contributing to the diagnosis of cancer in an early stage. However, scientists have struggled to find a simple, fast, and low-cost method to accurately detect/identify these nanoparticles, since the majority of them have diameters between 100 and 150 nm, thus being far below the diffraction limit. Methods: This study investigated if, by projecting the information provided from short-term portions of the back-scattered laser light signal collected by a polymeric lensed optical fiber tip dipped into a solution of synthetic nanoparticles into a lower features dimensional space, a discriminant function is able to correctly detect the presence of 100 nm synthetic nanoparticles in distilled water, in different concentration values. Results and discussion: This technique ensured an optimal performance (100% accuracy) in detecting nanoparticles for a concentration above or equal to 3.89 µg/mL (8.74E+10 particles/mL), and a performance of 90% for concentrations below this value and higher than 1.22E-03 µg/mL (2.74E+07 particles/mL), values that are compatible with human plasmatic levels of tumorderived and other types of EVs, as well as lipoproteins currently used as potential biomarkers of cardiovascular diseases. Conclusion: The proposed technique is able to detect synthetic nanoparticles whose dimensions are similar to EVs and other “clinically” relevant nanostructures, and in concentrations equivalent to the majority of cell-derived, platelet-derived EVs and lipoproteins physiological levels. This study can, therefore, provide valuable insights towards the future development of a device for EVs and other biological nanoparticles detection with innovative characteristics. |
| id |
RCAP_d65817e3359f0b2dd9136aac24373f68 |
|---|---|
| oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/136320 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Optical fiber-based sensing method for nanoparticle detection through supervised back-scattering analysis: A potential contributor for biomedicineBrownian motionDiffusive analysisExtracellular vesicles (evs) detectionLight scattering effectsLipoproteins detectionNanoparticlesNanoparticles detectionOptical fiber sensorsVirus detectionBackground: In view of the growing importance of nanotechnologies, the detection/identification of nanoparticles type has been considered of utmost importance. Although the characterization of synthetic/organic nanoparticles is currently considered a priority (eg, drug delivery devices, nanotextiles, theranostic nanoparticles), there are many examples of “naturally” generated nanostructures - for example, extracellular vesicles (EVs), lipoproteins, and virus - that provide useful information about human physiology or clinical conditions. For example, the detection of tumor-related exosomes, a specific type of EVs, in circulating fluids has been contributing to the diagnosis of cancer in an early stage. However, scientists have struggled to find a simple, fast, and low-cost method to accurately detect/identify these nanoparticles, since the majority of them have diameters between 100 and 150 nm, thus being far below the diffraction limit. Methods: This study investigated if, by projecting the information provided from short-term portions of the back-scattered laser light signal collected by a polymeric lensed optical fiber tip dipped into a solution of synthetic nanoparticles into a lower features dimensional space, a discriminant function is able to correctly detect the presence of 100 nm synthetic nanoparticles in distilled water, in different concentration values. Results and discussion: This technique ensured an optimal performance (100% accuracy) in detecting nanoparticles for a concentration above or equal to 3.89 µg/mL (8.74E+10 particles/mL), and a performance of 90% for concentrations below this value and higher than 1.22E-03 µg/mL (2.74E+07 particles/mL), values that are compatible with human plasmatic levels of tumorderived and other types of EVs, as well as lipoproteins currently used as potential biomarkers of cardiovascular diseases. Conclusion: The proposed technique is able to detect synthetic nanoparticles whose dimensions are similar to EVs and other “clinically” relevant nanostructures, and in concentrations equivalent to the majority of cell-derived, platelet-derived EVs and lipoproteins physiological levels. This study can, therefore, provide valuable insights towards the future development of a device for EVs and other biological nanoparticles detection with innovative characteristics.Dove Medical Press20192019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/136320eng1176-911410.2147/IJN.S174358Paiva, JSJorge, PASRibeiro, RSRSampaio, PRosa, CCCunha, JPSinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-27T17:22:33Zoai:repositorio-aberto.up.pt:10216/136320Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T22:12:19.425530Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Optical fiber-based sensing method for nanoparticle detection through supervised back-scattering analysis: A potential contributor for biomedicine |
| title |
Optical fiber-based sensing method for nanoparticle detection through supervised back-scattering analysis: A potential contributor for biomedicine |
| spellingShingle |
Optical fiber-based sensing method for nanoparticle detection through supervised back-scattering analysis: A potential contributor for biomedicine Paiva, JS Brownian motion Diffusive analysis Extracellular vesicles (evs) detection Light scattering effects Lipoproteins detection Nanoparticles Nanoparticles detection Optical fiber sensors Virus detection |
| title_short |
Optical fiber-based sensing method for nanoparticle detection through supervised back-scattering analysis: A potential contributor for biomedicine |
| title_full |
Optical fiber-based sensing method for nanoparticle detection through supervised back-scattering analysis: A potential contributor for biomedicine |
| title_fullStr |
Optical fiber-based sensing method for nanoparticle detection through supervised back-scattering analysis: A potential contributor for biomedicine |
| title_full_unstemmed |
Optical fiber-based sensing method for nanoparticle detection through supervised back-scattering analysis: A potential contributor for biomedicine |
| title_sort |
Optical fiber-based sensing method for nanoparticle detection through supervised back-scattering analysis: A potential contributor for biomedicine |
| author |
Paiva, JS |
| author_facet |
Paiva, JS Jorge, PAS Ribeiro, RSR Sampaio, P Rosa, CC Cunha, JPS |
| author_role |
author |
| author2 |
Jorge, PAS Ribeiro, RSR Sampaio, P Rosa, CC Cunha, JPS |
| author2_role |
author author author author author |
| dc.contributor.author.fl_str_mv |
Paiva, JS Jorge, PAS Ribeiro, RSR Sampaio, P Rosa, CC Cunha, JPS |
| dc.subject.por.fl_str_mv |
Brownian motion Diffusive analysis Extracellular vesicles (evs) detection Light scattering effects Lipoproteins detection Nanoparticles Nanoparticles detection Optical fiber sensors Virus detection |
| topic |
Brownian motion Diffusive analysis Extracellular vesicles (evs) detection Light scattering effects Lipoproteins detection Nanoparticles Nanoparticles detection Optical fiber sensors Virus detection |
| description |
Background: In view of the growing importance of nanotechnologies, the detection/identification of nanoparticles type has been considered of utmost importance. Although the characterization of synthetic/organic nanoparticles is currently considered a priority (eg, drug delivery devices, nanotextiles, theranostic nanoparticles), there are many examples of “naturally” generated nanostructures - for example, extracellular vesicles (EVs), lipoproteins, and virus - that provide useful information about human physiology or clinical conditions. For example, the detection of tumor-related exosomes, a specific type of EVs, in circulating fluids has been contributing to the diagnosis of cancer in an early stage. However, scientists have struggled to find a simple, fast, and low-cost method to accurately detect/identify these nanoparticles, since the majority of them have diameters between 100 and 150 nm, thus being far below the diffraction limit. Methods: This study investigated if, by projecting the information provided from short-term portions of the back-scattered laser light signal collected by a polymeric lensed optical fiber tip dipped into a solution of synthetic nanoparticles into a lower features dimensional space, a discriminant function is able to correctly detect the presence of 100 nm synthetic nanoparticles in distilled water, in different concentration values. Results and discussion: This technique ensured an optimal performance (100% accuracy) in detecting nanoparticles for a concentration above or equal to 3.89 µg/mL (8.74E+10 particles/mL), and a performance of 90% for concentrations below this value and higher than 1.22E-03 µg/mL (2.74E+07 particles/mL), values that are compatible with human plasmatic levels of tumorderived and other types of EVs, as well as lipoproteins currently used as potential biomarkers of cardiovascular diseases. Conclusion: The proposed technique is able to detect synthetic nanoparticles whose dimensions are similar to EVs and other “clinically” relevant nanostructures, and in concentrations equivalent to the majority of cell-derived, platelet-derived EVs and lipoproteins physiological levels. This study can, therefore, provide valuable insights towards the future development of a device for EVs and other biological nanoparticles detection with innovative characteristics. |
| publishDate |
2019 |
| dc.date.none.fl_str_mv |
2019 2019-01-01T00:00:00Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/136320 |
| url |
https://hdl.handle.net/10216/136320 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
1176-9114 10.2147/IJN.S174358 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Dove Medical Press |
| publisher.none.fl_str_mv |
Dove Medical Press |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833599595195662336 |