Collaborative dynamic decision making: a case study from B2B supplier selection
| Main Author: | |
|---|---|
| Publication Date: | 2012 |
| Other Authors: | , , |
| Language: | eng |
| Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Download full: | http://hdl.handle.net/1822/42947 |
Summary: | The problem of supplier selection can be easily modeled as a multiple-criteria decision making (MCDM) problem: businesses express their preferences with respect to suppliers, which can then be ranked and selected. This approach has two major pitfalls: first, it does not consider a dynamic scenario, in which suppliers and their ratings are constantly changing; second, it only addressed the problem from the point of view of a single business, and cannot be easily applied when considering more than one business. To overcome these problems, we introduce a method for supplier selection that builds upon the dynamic MCDM framework of Campanella and Ribeiro [1] and, by means of a linear programming model, can be used in the case of multiple collaborating businesses plan- ning their next batch of orders together. |
| id |
RCAP_d481aafb8f4f718f5824b293bb8f0dc2 |
|---|---|
| oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/42947 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Collaborative dynamic decision making: a case study from B2B supplier selectionCiências Sociais::PsicologiaEngenharia e Tecnologia::Outras Engenharias e TecnologiasThe problem of supplier selection can be easily modeled as a multiple-criteria decision making (MCDM) problem: businesses express their preferences with respect to suppliers, which can then be ranked and selected. This approach has two major pitfalls: first, it does not consider a dynamic scenario, in which suppliers and their ratings are constantly changing; second, it only addressed the problem from the point of view of a single business, and cannot be easily applied when considering more than one business. To overcome these problems, we introduce a method for supplier selection that builds upon the dynamic MCDM framework of Campanella and Ribeiro [1] and, by means of a linear programming model, can be used in the case of multiple collaborating businesses plan- ning their next batch of orders together.Fundação para a Ciência e a Tecnologia, Portugal, under contract CONT DOUT/49/UNINOVA/0/5902/1/2006SpringerHernández, Jorge E.Zarate, PascaleDargam, FátimaDelibasić, BorisLiu, SaofengRibeiro, RitaUniversidade do MinhoCampanella, G.Pereira, Alfredo F.Ribeiro, R. A.Varela, Maria Leonilde Rocha20122012-01-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/42947eng978-3-642-32190-0 (Print)1865-134810.1007/978-3-642-32191-7_7info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-11T06:29:35Zoai:repositorium.sdum.uminho.pt:1822/42947Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T15:55:02.940183Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Collaborative dynamic decision making: a case study from B2B supplier selection |
| title |
Collaborative dynamic decision making: a case study from B2B supplier selection |
| spellingShingle |
Collaborative dynamic decision making: a case study from B2B supplier selection Campanella, G. Ciências Sociais::Psicologia Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
| title_short |
Collaborative dynamic decision making: a case study from B2B supplier selection |
| title_full |
Collaborative dynamic decision making: a case study from B2B supplier selection |
| title_fullStr |
Collaborative dynamic decision making: a case study from B2B supplier selection |
| title_full_unstemmed |
Collaborative dynamic decision making: a case study from B2B supplier selection |
| title_sort |
Collaborative dynamic decision making: a case study from B2B supplier selection |
| author |
Campanella, G. |
| author_facet |
Campanella, G. Pereira, Alfredo F. Ribeiro, R. A. Varela, Maria Leonilde Rocha |
| author_role |
author |
| author2 |
Pereira, Alfredo F. Ribeiro, R. A. Varela, Maria Leonilde Rocha |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
Hernández, Jorge E. Zarate, Pascale Dargam, Fátima Delibasić, Boris Liu, Saofeng Ribeiro, Rita Universidade do Minho |
| dc.contributor.author.fl_str_mv |
Campanella, G. Pereira, Alfredo F. Ribeiro, R. A. Varela, Maria Leonilde Rocha |
| dc.subject.por.fl_str_mv |
Ciências Sociais::Psicologia Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
| topic |
Ciências Sociais::Psicologia Engenharia e Tecnologia::Outras Engenharias e Tecnologias |
| description |
The problem of supplier selection can be easily modeled as a multiple-criteria decision making (MCDM) problem: businesses express their preferences with respect to suppliers, which can then be ranked and selected. This approach has two major pitfalls: first, it does not consider a dynamic scenario, in which suppliers and their ratings are constantly changing; second, it only addressed the problem from the point of view of a single business, and cannot be easily applied when considering more than one business. To overcome these problems, we introduce a method for supplier selection that builds upon the dynamic MCDM framework of Campanella and Ribeiro [1] and, by means of a linear programming model, can be used in the case of multiple collaborating businesses plan- ning their next batch of orders together. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012 2012-01-01T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference paper |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/42947 |
| url |
http://hdl.handle.net/1822/42947 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
978-3-642-32190-0 (Print) 1865-1348 10.1007/978-3-642-32191-7_7 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833595620312481792 |