Portuguese automotive aftermarket forecast through time-series analysis and modelling
Main Author: | |
---|---|
Publication Date: | 2021 |
Format: | Master thesis |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | http://hdl.handle.net/10362/123452 |
Summary: | The composition of the future car fleet is interesting tomany. The automotive aftermarket’s concerns rely on the diminishment of profitable segments and the growth of not-so-maintenance-intensive electric vehicles. This project develops time-series forecasting models, namely ARIMA models, predicting the Portuguese car fleet in 2030, which declines 11.6%, to around 5.4 million vehicles. Upon this knowledge, the consequences of the share of electric vehicles rising up to 16.7% are assessed, along with other external factors’, under three scenarios. One factor seemingly highly influential is car sharing services, as the vehicle segment typically associated with it is predicted to grow 65%. |
id |
RCAP_d3876328a7fcfe93ea4d0bedc6b67668 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/123452 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Portuguese automotive aftermarket forecast through time-series analysis and modellingFleet modellingAutomotive aftermarketForecastArimaDomínio/Área Científica::Ciências Sociais::Economia e GestãoThe composition of the future car fleet is interesting tomany. The automotive aftermarket’s concerns rely on the diminishment of profitable segments and the growth of not-so-maintenance-intensive electric vehicles. This project develops time-series forecasting models, namely ARIMA models, predicting the Portuguese car fleet in 2030, which declines 11.6%, to around 5.4 million vehicles. Upon this knowledge, the consequences of the share of electric vehicles rising up to 16.7% are assessed, along with other external factors’, under three scenarios. One factor seemingly highly influential is car sharing services, as the vehicle segment typically associated with it is predicted to grow 65%.Santos, CarlosRUNMachado, Pedro Maria De Castro Lopes E Figueira2021-08-31T10:37:30Z2021-01-152021-01-042021-01-15T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/123452TID:202742318enginfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T17:55:26Zoai:run.unl.pt:10362/123452Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:26:26.819495Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Portuguese automotive aftermarket forecast through time-series analysis and modelling |
title |
Portuguese automotive aftermarket forecast through time-series analysis and modelling |
spellingShingle |
Portuguese automotive aftermarket forecast through time-series analysis and modelling Machado, Pedro Maria De Castro Lopes E Figueira Fleet modelling Automotive aftermarket Forecast Arima Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Portuguese automotive aftermarket forecast through time-series analysis and modelling |
title_full |
Portuguese automotive aftermarket forecast through time-series analysis and modelling |
title_fullStr |
Portuguese automotive aftermarket forecast through time-series analysis and modelling |
title_full_unstemmed |
Portuguese automotive aftermarket forecast through time-series analysis and modelling |
title_sort |
Portuguese automotive aftermarket forecast through time-series analysis and modelling |
author |
Machado, Pedro Maria De Castro Lopes E Figueira |
author_facet |
Machado, Pedro Maria De Castro Lopes E Figueira |
author_role |
author |
dc.contributor.none.fl_str_mv |
Santos, Carlos RUN |
dc.contributor.author.fl_str_mv |
Machado, Pedro Maria De Castro Lopes E Figueira |
dc.subject.por.fl_str_mv |
Fleet modelling Automotive aftermarket Forecast Arima Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Fleet modelling Automotive aftermarket Forecast Arima Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
The composition of the future car fleet is interesting tomany. The automotive aftermarket’s concerns rely on the diminishment of profitable segments and the growth of not-so-maintenance-intensive electric vehicles. This project develops time-series forecasting models, namely ARIMA models, predicting the Portuguese car fleet in 2030, which declines 11.6%, to around 5.4 million vehicles. Upon this knowledge, the consequences of the share of electric vehicles rising up to 16.7% are assessed, along with other external factors’, under three scenarios. One factor seemingly highly influential is car sharing services, as the vehicle segment typically associated with it is predicted to grow 65%. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-31T10:37:30Z 2021-01-15 2021-01-04 2021-01-15T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/123452 TID:202742318 |
url |
http://hdl.handle.net/10362/123452 |
identifier_str_mv |
TID:202742318 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833596696793186304 |