Export Ready — 

Ressonância magnética mamária e radiomics na avaliação da resposta à quimioterapia neoadjuvante em pacientes com cancro da mama

Bibliographic Details
Main Author: Oliveira, Patrícia da Silva
Publication Date: 2021
Format: Master thesis
Language: por
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: http://hdl.handle.net/10773/33150
Summary: O cancro da mama é a neoplasia maligna mais comum no sexo feminino e uma das principais causas de morte a nível mundial. É uma doença multifatorial e o diagnóstico precoce permite reduzir, a longo prazo, as taxas de mortalidade associadas. A quimioterapia neoadjuvante (QTN) está indicada em casos de doença localmente avançada, e a resposta à terapêutica pode ser avaliada através de Ressonância Magnética (RM) mamária multiparamétrica. A radiomics pretende detetar alterações não identificadas visualmente, através da extração de características, e os modelos de Machine Learning (ML) estabelecer relações entre as características extraídas, características clínicas e endpoints clínicos. O presente estudo teve como objetivo geral avaliar a capacidade da radiomics e do modelo random forest (RF) em estabelecer relações entre as características radiómicas, clínicas e endpoints clínicos, de 86 pacientes com cancro da mama, submetidos a QTN, que realizaram RM mamária. Foram analisadas regiões de interesse (ROIs) de imagens ponderadas em T1 com contraste, tendo em conta a região tumoral que capta contraste, através das características de entropia e do histograma de intensidades. Avaliaram-se características como a resposta patológica completa (pCR), o índice RCB (Residual Cancer Burden), a classificação hormonal, a sobrevivência e a sobrevivência livre de recorrência (RFS). Os resultados indicam que, para as várias análises, as características clínicas se sobrepõem às radiómicas. Conclui-se que, deve-se incluir na análise radiómica todo o tumor, e eventualmente o restante tecido mamário, assim como imagens ponderadas em T2 e difusão para que as características radiómicas possam ser mais evidenciadas.
id RCAP_d1c3ca36664d8f9a3675185eb50ff57c
oai_identifier_str oai:ria.ua.pt:10773/33150
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Ressonância magnética mamária e radiomics na avaliação da resposta à quimioterapia neoadjuvante em pacientes com cancro da mamaRessonância magnética mamáriaCancro da mamaQuimioterapia neoadjuvanteRadiomicsMachine LearningO cancro da mama é a neoplasia maligna mais comum no sexo feminino e uma das principais causas de morte a nível mundial. É uma doença multifatorial e o diagnóstico precoce permite reduzir, a longo prazo, as taxas de mortalidade associadas. A quimioterapia neoadjuvante (QTN) está indicada em casos de doença localmente avançada, e a resposta à terapêutica pode ser avaliada através de Ressonância Magnética (RM) mamária multiparamétrica. A radiomics pretende detetar alterações não identificadas visualmente, através da extração de características, e os modelos de Machine Learning (ML) estabelecer relações entre as características extraídas, características clínicas e endpoints clínicos. O presente estudo teve como objetivo geral avaliar a capacidade da radiomics e do modelo random forest (RF) em estabelecer relações entre as características radiómicas, clínicas e endpoints clínicos, de 86 pacientes com cancro da mama, submetidos a QTN, que realizaram RM mamária. Foram analisadas regiões de interesse (ROIs) de imagens ponderadas em T1 com contraste, tendo em conta a região tumoral que capta contraste, através das características de entropia e do histograma de intensidades. Avaliaram-se características como a resposta patológica completa (pCR), o índice RCB (Residual Cancer Burden), a classificação hormonal, a sobrevivência e a sobrevivência livre de recorrência (RFS). Os resultados indicam que, para as várias análises, as características clínicas se sobrepõem às radiómicas. Conclui-se que, deve-se incluir na análise radiómica todo o tumor, e eventualmente o restante tecido mamário, assim como imagens ponderadas em T2 e difusão para que as características radiómicas possam ser mais evidenciadas.Breast cancer is the most common malignant neoplasm in females and one of the main causes of death worldwide. It is a multifactorial disease and early diagnosis allows for a long-term reduction in associated mortality rates. Neoadjuvant chemotherapy (NAC) is indicated in cases of locally advanced disease, and the response to therapy can be assessed using multiparametric breast Magnetic Resonance Imaging (MRI). Radiomics aims to detect visually unidentified changes through feature extraction, and Machine Learning (ML) models establish relationships between extracted features, clinical features, and clinical endpoints. The present study intends to evaluate the ability of radiomics and the random forest (RF) model to establish relationships between radiomic characteristics, clinical and clinical endpoints, of 86 patients with breast cancer, undergoing NAC, who underwent breast MRI. Regions of interest (ROIs) of contrast-enhanced T1-weighted images were analyzed, considering the tumor region that captures contrast, through entropy features and intensities histogram. Features such as pathological complete response (pCR), RCB index (Residual Cancer Burden), hormonal classification, survival, and recurrence-free survival (RFS) were evaluated. The results show that, for the various analyses, the clinical features overlapped the radiomics ones. It is concluded that the entire tumor, and eventually the remaining breast tissue, should be included in the radiological analysis, as well as T2-weighted and diffusion-weighted images so that the radiological features can be more evident.2022-02-14T10:05:12Z2021-12-06T00:00:00Z2021-12-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/33150porOliveira, Patrícia da Silvainfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-06T04:35:41Zoai:ria.ua.pt:10773/33150Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T14:13:52.857503Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Ressonância magnética mamária e radiomics na avaliação da resposta à quimioterapia neoadjuvante em pacientes com cancro da mama
title Ressonância magnética mamária e radiomics na avaliação da resposta à quimioterapia neoadjuvante em pacientes com cancro da mama
spellingShingle Ressonância magnética mamária e radiomics na avaliação da resposta à quimioterapia neoadjuvante em pacientes com cancro da mama
Oliveira, Patrícia da Silva
Ressonância magnética mamária
Cancro da mama
Quimioterapia neoadjuvante
Radiomics
Machine Learning
title_short Ressonância magnética mamária e radiomics na avaliação da resposta à quimioterapia neoadjuvante em pacientes com cancro da mama
title_full Ressonância magnética mamária e radiomics na avaliação da resposta à quimioterapia neoadjuvante em pacientes com cancro da mama
title_fullStr Ressonância magnética mamária e radiomics na avaliação da resposta à quimioterapia neoadjuvante em pacientes com cancro da mama
title_full_unstemmed Ressonância magnética mamária e radiomics na avaliação da resposta à quimioterapia neoadjuvante em pacientes com cancro da mama
title_sort Ressonância magnética mamária e radiomics na avaliação da resposta à quimioterapia neoadjuvante em pacientes com cancro da mama
author Oliveira, Patrícia da Silva
author_facet Oliveira, Patrícia da Silva
author_role author
dc.contributor.author.fl_str_mv Oliveira, Patrícia da Silva
dc.subject.por.fl_str_mv Ressonância magnética mamária
Cancro da mama
Quimioterapia neoadjuvante
Radiomics
Machine Learning
topic Ressonância magnética mamária
Cancro da mama
Quimioterapia neoadjuvante
Radiomics
Machine Learning
description O cancro da mama é a neoplasia maligna mais comum no sexo feminino e uma das principais causas de morte a nível mundial. É uma doença multifatorial e o diagnóstico precoce permite reduzir, a longo prazo, as taxas de mortalidade associadas. A quimioterapia neoadjuvante (QTN) está indicada em casos de doença localmente avançada, e a resposta à terapêutica pode ser avaliada através de Ressonância Magnética (RM) mamária multiparamétrica. A radiomics pretende detetar alterações não identificadas visualmente, através da extração de características, e os modelos de Machine Learning (ML) estabelecer relações entre as características extraídas, características clínicas e endpoints clínicos. O presente estudo teve como objetivo geral avaliar a capacidade da radiomics e do modelo random forest (RF) em estabelecer relações entre as características radiómicas, clínicas e endpoints clínicos, de 86 pacientes com cancro da mama, submetidos a QTN, que realizaram RM mamária. Foram analisadas regiões de interesse (ROIs) de imagens ponderadas em T1 com contraste, tendo em conta a região tumoral que capta contraste, através das características de entropia e do histograma de intensidades. Avaliaram-se características como a resposta patológica completa (pCR), o índice RCB (Residual Cancer Burden), a classificação hormonal, a sobrevivência e a sobrevivência livre de recorrência (RFS). Os resultados indicam que, para as várias análises, as características clínicas se sobrepõem às radiómicas. Conclui-se que, deve-se incluir na análise radiómica todo o tumor, e eventualmente o restante tecido mamário, assim como imagens ponderadas em T2 e difusão para que as características radiómicas possam ser mais evidenciadas.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-06T00:00:00Z
2021-12-06
2022-02-14T10:05:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/33150
url http://hdl.handle.net/10773/33150
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833594418799575040