Optimizing a medical image registration algorithm based on profiling data for real-time performance

Bibliographic Details
Main Author: Carlos A. S. J. Gulo
Publication Date: 2021
Other Authors: Antonio C. Sementille, João Manuel R. S. Tavares
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10216/139707
Summary: Image registration is a commonly task in medical image analysis. Therefore, a significant number of algorithms have been developed to perform rigid and non-rigid image registration. Particularly, the free-form deformation algorithm is frequently used to carry out non-rigid registration task; however, it is a computationally very intensive algorithm. In this work, we describe an approach based on profiling data to identify potential parts of this algorithm for which parallel implementations can be developed. The proposed approach assesses the efficient of the algorithm by applying performance analysis techniques commonly available in traditional computer operating systems. Hence, this article provides guidelines to support researchers working on medical image processing and analysis to achieve real-time non-rigid image registration applications using common computing systems. According to our experimental findings, significant speedups can be accomplished by parallelizing sequential snippets, i.e., code regions that are executed more than once. For the selected costly functions previously identified in the studied free-form deformation algorithm, the developed parallelization decreased the runtime by up to seven times relatively to the related single thread based implementation. The implementations were developed based on the Open Multi-Processing application programming interface. In conclusion, this study confirms that based on the call graph visualization and detected performance bottlenecks, one can easily find and evaluate snippets which are potential optimization targets in addition to throughput in memory accesses.
id RCAP_d09f3d3c8775c3ce92a761f74f071f57
oai_identifier_str oai:repositorio-aberto.up.pt:10216/139707
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Optimizing a medical image registration algorithm based on profiling data for real-time performanceCiências Tecnológicas, Ciências médicas e da saúdeTechnological sciences, Medical and Health sciencesImage registration is a commonly task in medical image analysis. Therefore, a significant number of algorithms have been developed to perform rigid and non-rigid image registration. Particularly, the free-form deformation algorithm is frequently used to carry out non-rigid registration task; however, it is a computationally very intensive algorithm. In this work, we describe an approach based on profiling data to identify potential parts of this algorithm for which parallel implementations can be developed. The proposed approach assesses the efficient of the algorithm by applying performance analysis techniques commonly available in traditional computer operating systems. Hence, this article provides guidelines to support researchers working on medical image processing and analysis to achieve real-time non-rigid image registration applications using common computing systems. According to our experimental findings, significant speedups can be accomplished by parallelizing sequential snippets, i.e., code regions that are executed more than once. For the selected costly functions previously identified in the studied free-form deformation algorithm, the developed parallelization decreased the runtime by up to seven times relatively to the related single thread based implementation. The implementations were developed based on the Open Multi-Processing application programming interface. In conclusion, this study confirms that based on the call graph visualization and detected performance bottlenecks, one can easily find and evaluate snippets which are potential optimization targets in addition to throughput in memory accesses.2021-012021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfimage/jpeghttps://hdl.handle.net/10216/139707eng1380-750110.1007/s11042-021-11699-xCarlos A. S. J. GuloAntonio C. SementilleJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-27T18:19:34Zoai:repositorio-aberto.up.pt:10216/139707Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T22:45:23.812590Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Optimizing a medical image registration algorithm based on profiling data for real-time performance
title Optimizing a medical image registration algorithm based on profiling data for real-time performance
spellingShingle Optimizing a medical image registration algorithm based on profiling data for real-time performance
Carlos A. S. J. Gulo
Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
title_short Optimizing a medical image registration algorithm based on profiling data for real-time performance
title_full Optimizing a medical image registration algorithm based on profiling data for real-time performance
title_fullStr Optimizing a medical image registration algorithm based on profiling data for real-time performance
title_full_unstemmed Optimizing a medical image registration algorithm based on profiling data for real-time performance
title_sort Optimizing a medical image registration algorithm based on profiling data for real-time performance
author Carlos A. S. J. Gulo
author_facet Carlos A. S. J. Gulo
Antonio C. Sementille
João Manuel R. S. Tavares
author_role author
author2 Antonio C. Sementille
João Manuel R. S. Tavares
author2_role author
author
dc.contributor.author.fl_str_mv Carlos A. S. J. Gulo
Antonio C. Sementille
João Manuel R. S. Tavares
dc.subject.por.fl_str_mv Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
topic Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
description Image registration is a commonly task in medical image analysis. Therefore, a significant number of algorithms have been developed to perform rigid and non-rigid image registration. Particularly, the free-form deformation algorithm is frequently used to carry out non-rigid registration task; however, it is a computationally very intensive algorithm. In this work, we describe an approach based on profiling data to identify potential parts of this algorithm for which parallel implementations can be developed. The proposed approach assesses the efficient of the algorithm by applying performance analysis techniques commonly available in traditional computer operating systems. Hence, this article provides guidelines to support researchers working on medical image processing and analysis to achieve real-time non-rigid image registration applications using common computing systems. According to our experimental findings, significant speedups can be accomplished by parallelizing sequential snippets, i.e., code regions that are executed more than once. For the selected costly functions previously identified in the studied free-form deformation algorithm, the developed parallelization decreased the runtime by up to seven times relatively to the related single thread based implementation. The implementations were developed based on the Open Multi-Processing application programming interface. In conclusion, this study confirms that based on the call graph visualization and detected performance bottlenecks, one can easily find and evaluate snippets which are potential optimization targets in addition to throughput in memory accesses.
publishDate 2021
dc.date.none.fl_str_mv 2021-01
2021-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/139707
url https://hdl.handle.net/10216/139707
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1380-7501
10.1007/s11042-021-11699-x
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
image/jpeg
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833599846213222400