Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal

Detalhes bibliográficos
Autor(a) principal: Alves, André
Data de Publicação: 2023
Outros Autores: Moraes, Daniel, Barbosa, Bruno, Costa, Hugo, Moreira, Francisco D., Benevides, Pedro, Caetano, Mário, Campagnolo, Manuel
Idioma: eng
Título da fonte: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Texto Completo: http://hdl.handle.net/10362/153872
Resumo: Alves, A.; Moraes, D.; Barbosa, B.; Costa, H.; Moreira, F.; Benevides, P.; Caetano, M. and Campagnolo, M. (2023). Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal. In Proceedings of the 9th International Conference on Geographical Information Systems Theory, Applications and Management - GISTAM; ISBN 978-989-758-649-1; ISSN 2184-500X, SciTePress, pages 87-97. DOI: 10.5220/0011993100003473---This research was conducted under the collaboration contract DGT-ISA 261/2021 with funding from Compete2020 (POCI-05-5762-FSE-000368), supported by the European Social Fund, and Centro Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal 95 de Investigação em Gestão de Informação (MagIC), Project UIDB/00239/2020 (Forest Research Centre), both supported by the Portuguese Foundation for Science and Technology (FCT)
id RCAP_cfe62e48cb8259bfb74c4c8a1c471e70
oai_identifier_str oai:run.unl.pt:10362/153872
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of PortugalCCDCCOScEarth ObservationLand Cover Change ClassificationNDVISpectral CompositesThematic MapComputer Graphics and Computer-Aided DesignComputer Networks and CommunicationsComputer Science ApplicationsComputer Vision and Pattern RecognitionInformation SystemsSoftwareSDG 15 - Life on LandAlves, A.; Moraes, D.; Barbosa, B.; Costa, H.; Moreira, F.; Benevides, P.; Caetano, M. and Campagnolo, M. (2023). Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal. In Proceedings of the 9th International Conference on Geographical Information Systems Theory, Applications and Management - GISTAM; ISBN 978-989-758-649-1; ISSN 2184-500X, SciTePress, pages 87-97. DOI: 10.5220/0011993100003473---This research was conducted under the collaboration contract DGT-ISA 261/2021 with funding from Compete2020 (POCI-05-5762-FSE-000368), supported by the European Social Fund, and Centro Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal 95 de Investigação em Gestão de Informação (MagIC), Project UIDB/00239/2020 (Forest Research Centre), both supported by the Portuguese Foundation for Science and Technology (FCT)Land use/land cover (LULC) change detection and classification in maps based on automated data processing are becoming increasingly sophisticated in Earth Observation (EO). There is a growing number of annual maps available, with diverse but related production structures consisting primarily of classification and post-classification phases, the latter of which deals with inaccuracies of the first. The methodology production of the “Carta de Ocupação do Solo conjuntural” (COSc), a thematic land cover map of continental Portugal produced by the Directorate-General for Territory (DGT) mostly based on Sentinel-2 images classification, includes a semi-automatic phase of correction that combines expert knowledge and ancillary data in if-then-else rules validated by photointerpretation. Although this approach reduces misclassifications from an initial Random Forest (RF) prediction map, improving consistency between years and compliance with ecological succession, requires a lot of time-consuming semi-automatic procedures. This work evaluates the relevance of exploring an additional set of variables for automatic classification over disturbance-prone areas. A multitemporal dataset with 124 variables was analysed using data dimensionality reduction techniques, resulting in the identification of 35 major explanatory indicators, which were then used as inputs for RF classification with cross-validation. The estimated importance of the explanatory variables shows that composites of spectral bands, which are already included in the current COSc workflow, in conjunction with the inclusion of additional data namely, historical land cover information and change detection coefficients, from the Continuous Change Detection and Classification (CCDC) algorithm, are relevant for predicting land cover classes after disturbance. Since map updating is a more challenging task for disturbed pixels, we focused our analysis on locations where COSc indicated potential land cover change. Nonetheless, the overall classification accuracy for our experiments was 72.34 % which is similar to the accuracy of COSc for this region of Portugal. The findings suggest new variables that could improve future COSc maps.SciTePress - Science and Technology PublicationsInformation Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNAlves, AndréMoraes, DanielBarbosa, BrunoCosta, HugoMoreira, Francisco D.Benevides, PedroCaetano, MárioCampagnolo, Manuel2023-06-13T22:13:51Z2023-05-012023-05-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion11application/pdfhttp://hdl.handle.net/10362/153872eng97898975864912184-500XPURE: 63541966https://doi.org/10.5220/0011993100003473info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:12:02Zoai:run.unl.pt:10362/153872Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:42:25.811884Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal
title Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal
spellingShingle Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal
Alves, André
CCDC
COSc
Earth Observation
Land Cover Change Classification
NDVI
Spectral Composites
Thematic Map
Computer Graphics and Computer-Aided Design
Computer Networks and Communications
Computer Science Applications
Computer Vision and Pattern Recognition
Information Systems
Software
SDG 15 - Life on Land
title_short Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal
title_full Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal
title_fullStr Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal
title_full_unstemmed Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal
title_sort Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal
author Alves, André
author_facet Alves, André
Moraes, Daniel
Barbosa, Bruno
Costa, Hugo
Moreira, Francisco D.
Benevides, Pedro
Caetano, Mário
Campagnolo, Manuel
author_role author
author2 Moraes, Daniel
Barbosa, Bruno
Costa, Hugo
Moreira, Francisco D.
Benevides, Pedro
Caetano, Mário
Campagnolo, Manuel
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Information Management Research Center (MagIC) - NOVA Information Management School
NOVA Information Management School (NOVA IMS)
RUN
dc.contributor.author.fl_str_mv Alves, André
Moraes, Daniel
Barbosa, Bruno
Costa, Hugo
Moreira, Francisco D.
Benevides, Pedro
Caetano, Mário
Campagnolo, Manuel
dc.subject.por.fl_str_mv CCDC
COSc
Earth Observation
Land Cover Change Classification
NDVI
Spectral Composites
Thematic Map
Computer Graphics and Computer-Aided Design
Computer Networks and Communications
Computer Science Applications
Computer Vision and Pattern Recognition
Information Systems
Software
SDG 15 - Life on Land
topic CCDC
COSc
Earth Observation
Land Cover Change Classification
NDVI
Spectral Composites
Thematic Map
Computer Graphics and Computer-Aided Design
Computer Networks and Communications
Computer Science Applications
Computer Vision and Pattern Recognition
Information Systems
Software
SDG 15 - Life on Land
description Alves, A.; Moraes, D.; Barbosa, B.; Costa, H.; Moreira, F.; Benevides, P.; Caetano, M. and Campagnolo, M. (2023). Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal. In Proceedings of the 9th International Conference on Geographical Information Systems Theory, Applications and Management - GISTAM; ISBN 978-989-758-649-1; ISSN 2184-500X, SciTePress, pages 87-97. DOI: 10.5220/0011993100003473---This research was conducted under the collaboration contract DGT-ISA 261/2021 with funding from Compete2020 (POCI-05-5762-FSE-000368), supported by the European Social Fund, and Centro Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal 95 de Investigação em Gestão de Informação (MagIC), Project UIDB/00239/2020 (Forest Research Centre), both supported by the Portuguese Foundation for Science and Technology (FCT)
publishDate 2023
dc.date.none.fl_str_mv 2023-06-13T22:13:51Z
2023-05-01
2023-05-01T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/153872
url http://hdl.handle.net/10362/153872
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 9789897586491
2184-500X
PURE: 63541966
https://doi.org/10.5220/0011993100003473
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 11
application/pdf
dc.publisher.none.fl_str_mv SciTePress - Science and Technology Publications
publisher.none.fl_str_mv SciTePress - Science and Technology Publications
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833596907482513408