Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2023 |
| Outros Autores: | , , , , , , |
| Idioma: | eng |
| Título da fonte: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| Texto Completo: | http://hdl.handle.net/10362/153872 |
Resumo: | Alves, A.; Moraes, D.; Barbosa, B.; Costa, H.; Moreira, F.; Benevides, P.; Caetano, M. and Campagnolo, M. (2023). Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal. In Proceedings of the 9th International Conference on Geographical Information Systems Theory, Applications and Management - GISTAM; ISBN 978-989-758-649-1; ISSN 2184-500X, SciTePress, pages 87-97. DOI: 10.5220/0011993100003473---This research was conducted under the collaboration contract DGT-ISA 261/2021 with funding from Compete2020 (POCI-05-5762-FSE-000368), supported by the European Social Fund, and Centro Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal 95 de Investigação em Gestão de Informação (MagIC), Project UIDB/00239/2020 (Forest Research Centre), both supported by the Portuguese Foundation for Science and Technology (FCT) |
| id |
RCAP_cfe62e48cb8259bfb74c4c8a1c471e70 |
|---|---|
| oai_identifier_str |
oai:run.unl.pt:10362/153872 |
| network_acronym_str |
RCAP |
| network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository_id_str |
https://opendoar.ac.uk/repository/7160 |
| spelling |
Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of PortugalCCDCCOScEarth ObservationLand Cover Change ClassificationNDVISpectral CompositesThematic MapComputer Graphics and Computer-Aided DesignComputer Networks and CommunicationsComputer Science ApplicationsComputer Vision and Pattern RecognitionInformation SystemsSoftwareSDG 15 - Life on LandAlves, A.; Moraes, D.; Barbosa, B.; Costa, H.; Moreira, F.; Benevides, P.; Caetano, M. and Campagnolo, M. (2023). Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal. In Proceedings of the 9th International Conference on Geographical Information Systems Theory, Applications and Management - GISTAM; ISBN 978-989-758-649-1; ISSN 2184-500X, SciTePress, pages 87-97. DOI: 10.5220/0011993100003473---This research was conducted under the collaboration contract DGT-ISA 261/2021 with funding from Compete2020 (POCI-05-5762-FSE-000368), supported by the European Social Fund, and Centro Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal 95 de Investigação em Gestão de Informação (MagIC), Project UIDB/00239/2020 (Forest Research Centre), both supported by the Portuguese Foundation for Science and Technology (FCT)Land use/land cover (LULC) change detection and classification in maps based on automated data processing are becoming increasingly sophisticated in Earth Observation (EO). There is a growing number of annual maps available, with diverse but related production structures consisting primarily of classification and post-classification phases, the latter of which deals with inaccuracies of the first. The methodology production of the “Carta de Ocupação do Solo conjuntural” (COSc), a thematic land cover map of continental Portugal produced by the Directorate-General for Territory (DGT) mostly based on Sentinel-2 images classification, includes a semi-automatic phase of correction that combines expert knowledge and ancillary data in if-then-else rules validated by photointerpretation. Although this approach reduces misclassifications from an initial Random Forest (RF) prediction map, improving consistency between years and compliance with ecological succession, requires a lot of time-consuming semi-automatic procedures. This work evaluates the relevance of exploring an additional set of variables for automatic classification over disturbance-prone areas. A multitemporal dataset with 124 variables was analysed using data dimensionality reduction techniques, resulting in the identification of 35 major explanatory indicators, which were then used as inputs for RF classification with cross-validation. The estimated importance of the explanatory variables shows that composites of spectral bands, which are already included in the current COSc workflow, in conjunction with the inclusion of additional data namely, historical land cover information and change detection coefficients, from the Continuous Change Detection and Classification (CCDC) algorithm, are relevant for predicting land cover classes after disturbance. Since map updating is a more challenging task for disturbed pixels, we focused our analysis on locations where COSc indicated potential land cover change. Nonetheless, the overall classification accuracy for our experiments was 72.34 % which is similar to the accuracy of COSc for this region of Portugal. The findings suggest new variables that could improve future COSc maps.SciTePress - Science and Technology PublicationsInformation Management Research Center (MagIC) - NOVA Information Management SchoolNOVA Information Management School (NOVA IMS)RUNAlves, AndréMoraes, DanielBarbosa, BrunoCosta, HugoMoreira, Francisco D.Benevides, PedroCaetano, MárioCampagnolo, Manuel2023-06-13T22:13:51Z2023-05-012023-05-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersion11application/pdfhttp://hdl.handle.net/10362/153872eng97898975864912184-500XPURE: 63541966https://doi.org/10.5220/0011993100003473info:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2024-05-22T18:12:02Zoai:run.unl.pt:10362/153872Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T17:42:25.811884Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
| dc.title.none.fl_str_mv |
Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal |
| title |
Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal |
| spellingShingle |
Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal Alves, André CCDC COSc Earth Observation Land Cover Change Classification NDVI Spectral Composites Thematic Map Computer Graphics and Computer-Aided Design Computer Networks and Communications Computer Science Applications Computer Vision and Pattern Recognition Information Systems Software SDG 15 - Life on Land |
| title_short |
Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal |
| title_full |
Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal |
| title_fullStr |
Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal |
| title_full_unstemmed |
Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal |
| title_sort |
Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal |
| author |
Alves, André |
| author_facet |
Alves, André Moraes, Daniel Barbosa, Bruno Costa, Hugo Moreira, Francisco D. Benevides, Pedro Caetano, Mário Campagnolo, Manuel |
| author_role |
author |
| author2 |
Moraes, Daniel Barbosa, Bruno Costa, Hugo Moreira, Francisco D. Benevides, Pedro Caetano, Mário Campagnolo, Manuel |
| author2_role |
author author author author author author author |
| dc.contributor.none.fl_str_mv |
Information Management Research Center (MagIC) - NOVA Information Management School NOVA Information Management School (NOVA IMS) RUN |
| dc.contributor.author.fl_str_mv |
Alves, André Moraes, Daniel Barbosa, Bruno Costa, Hugo Moreira, Francisco D. Benevides, Pedro Caetano, Mário Campagnolo, Manuel |
| dc.subject.por.fl_str_mv |
CCDC COSc Earth Observation Land Cover Change Classification NDVI Spectral Composites Thematic Map Computer Graphics and Computer-Aided Design Computer Networks and Communications Computer Science Applications Computer Vision and Pattern Recognition Information Systems Software SDG 15 - Life on Land |
| topic |
CCDC COSc Earth Observation Land Cover Change Classification NDVI Spectral Composites Thematic Map Computer Graphics and Computer-Aided Design Computer Networks and Communications Computer Science Applications Computer Vision and Pattern Recognition Information Systems Software SDG 15 - Life on Land |
| description |
Alves, A.; Moraes, D.; Barbosa, B.; Costa, H.; Moreira, F.; Benevides, P.; Caetano, M. and Campagnolo, M. (2023). Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal. In Proceedings of the 9th International Conference on Geographical Information Systems Theory, Applications and Management - GISTAM; ISBN 978-989-758-649-1; ISSN 2184-500X, SciTePress, pages 87-97. DOI: 10.5220/0011993100003473---This research was conducted under the collaboration contract DGT-ISA 261/2021 with funding from Compete2020 (POCI-05-5762-FSE-000368), supported by the European Social Fund, and Centro Exploring Spectral Data, Change Detection Information and Trajectories for Land Cover Monitoring over a Fire-Prone Area of Portugal 95 de Investigação em Gestão de Informação (MagIC), Project UIDB/00239/2020 (Forest Research Centre), both supported by the Portuguese Foundation for Science and Technology (FCT) |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-06-13T22:13:51Z 2023-05-01 2023-05-01T00:00:00Z |
| dc.type.driver.fl_str_mv |
conference object |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/153872 |
| url |
http://hdl.handle.net/10362/153872 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
9789897586491 2184-500X PURE: 63541966 https://doi.org/10.5220/0011993100003473 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
11 application/pdf |
| dc.publisher.none.fl_str_mv |
SciTePress - Science and Technology Publications |
| publisher.none.fl_str_mv |
SciTePress - Science and Technology Publications |
| dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
| instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| instacron_str |
RCAAP |
| institution |
RCAAP |
| reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
| repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
| repository.mail.fl_str_mv |
info@rcaap.pt |
| _version_ |
1833596907482513408 |